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Abstract

Magnetic reconnection is a distinctive fundamental process which often causes

explosive energy release phenomena in various astrophysical plasmas. Generally,

the astrophysical plasmas are characterized by large magnetic Reynolds number

(RM = Lv/λ, in usual notations) owing to their inherent large length scale and high

temperature. Large RM causes the Alfvèn flux freezing theorem—magnetic flux

being frozen to the plasma flow—to be satisfied. Reconnection occurs due to the

violation of Alfvén’s flux-freezing theorem at small length scales which generate in

consequence of large-scale dynamics. Such small scales are characterized by large

gradients in magnetic field and may occur as current sheets (regions of high current

density) and magnetic nulls (locations where magnetic field vanishes; B = 0). The

multiscale behavior of reconnection makes it challenging to study the physics at

small scales and capturing its effect on large scale dynamics simultaneously. Iden-

tification of the reconnection scale depends on the specific physical system under

consideration. The outermost atmosphere of our nearest star Sun—solar corona,

serves as a prototype astrophysical plasma. Large scale solar eruptions observed

on the Sun, such as flares and coronal mass ejections (CMEs) are manifestation of

magnetic reconnection. In particular, solar flares are fast and impulsive phenom-

ena since huge amount of energy (≈ 1032 ergs) is released suddenly and rapidly

within a very short time period (≈ few minutes to hours). Therefore, the un-

derlying reconnections must be fast and impulsive too. The reconnection length

scale in solar corona (based on observed impulsive rise time of hard X-ray emission

during the solar flares) turns out to be few tens of meters. At this scale, the order

analysis of the induction equation indicates that the order of Hall effect is much

higher than the resistive diffusion. This leads to the Hall MHD description which

can account for the impulsive behavior as compared to the traditional theoretical

models of reconnection.

In the above backdrop, this thesis focuses on the investigation of Hall effect in

3D magnetic reconnection through numerical simulations. For the purpose, a Hall

MHD solver is developed and benchmarked toward the known properties of Hall-

assisted reconnection. For benchmarking, a comparative study using Hall MHD

and MHD simulations is carried out. The simultions are initiated with an unidi-
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rectional sinusoidal magnetic field (contained in xz plane of employed Cartesian

geometry), having non-zero Lorentz force which initiates the dynamics. In MHD

simulation, the evolution of magnetic field lines is symmetric and confined within

the xz planes. Magnetic reconnections within each plane generate magnetic is-

lands which, when stacked together along the y direction, appear as magnetic flux

tube made by disjoint magnetic field lines. Contrarily, the Hall MHD simulation

exihibits an asymmetric and three-dimensional (3D) evolution, owing to the devel-

opment of an out-of-reconnection plane (xz plane) magnetic field component (By)

which is quadrupolar. This is in agreement with the earlier Hall MHD simulations

in the literature. Subsequently, the By component causes the formation of mag-

netic flux rope (MFR) in the computational domain. In their 2D projections, the

rope and the flux tube appear as magnetic islands. Subsequent evolution exhibits

the breakage of primary islands into secondary islands followed by their coalescence

in both the simulations. However, the dynamics is faster during the Hall MHD. An

important finding is the formation of twisted 3D magnetic structures which cannot

be apprehended from 2D calculations, although their projections agree with the

latter. The volume averaged current density rate shows abrupt changes during

the Hall MHD—signifying the impulsiveness. Alongside, we have also explored

the Whistler wave mode numerically vis-a-vis its analytical model and found the

two to be matching reasonably well in Hall MHD simulations. Overall, the results

agree with the existing scenario of Hall-assisted reconnection, thus validating the

model.

Since, the evolution of an MFR is instructive to understand the CMEs and

eruptive flares on the Sun, the numerical model is employed to perform Hall MHD

and MHD simulations toward the generation and evolution of an MFR. The sim-

ulations are initiated with 2.5D and 3D bipolar sheared magnetic fields. In 2.5D

case, MFR is levitating and unanchored while in 3D case, it is anchored to bottom

boundary. The generation of MFR due to primary reconnections is identical for

both the cases in the two simulations. However, subsequent evolution of MFRs is

influenced by the Hall effect. In 2.5D case, Hall MHD evolution depicts the local

breakage of MFR, owing to the internal reconnections. When viewed favorably,

the structure appears as reminiscent of the “number eight (8)”. The temporal evo-
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lution of average magnetic energies, in the presence and absence of the Hall effect,

is near-identical for both the cases and consistent with the theoretical expectation

that the Hall term does not affect the magnetic energy evolution. In 3D case,

the primary MFR gets generated in both the simulations due to repetitive recon-

nections at 3D null points. Subsequently, Hall MHD evolution features swirling

motion of small scale twisted structures in the vicinity of 3D null points. The

intermittent reconnections within these structures lead to the formation of large

scale MFR which indicates the association of small scale dynamics with large scale

structure formation—a key finding emphasizing the role of Hall effect in 3D recon-

nection.

Based on the accomplished knowledge about the Hall effect in 3D magnetic

reconnection, finally, in this thesis, the role of Hall effect is explored for a solar

flare. To achieve the aim, a C1.3 class flare on March 8, 2019 in solar active

region (AR) 12734 is selected as a test bed and the numerical model is employed

to perform the data-based Hall MHD and MHD simulations. Analysis of multi-

wavelength observations from AIA instrument on board SDO reveals an elongated

extreme ultraviolet (EUV) counterpart of the eruption in the western part of the

AR, a W-shaped flare ribbon and the circular motion of chromospheric material in

the eastern part. Subsequently, the magnetic field line morphologies over the AR

are explored by employing the non-force-free field (non-FFF) extrapolation which

uses the photospheric vector magnetogram from HMI insttrument on board SDO.

The analysis of the extrapolated field reveals the presence of 3D nulls and quasi-

separatrix layers (QSLs) which are favorable sites for 3D magnetic reconnection.

A null point with fan-spine configuration is found in the middle of active region

whose Hall MHD evolution is in better agreement with the tip of W-shaped flare

ribbon. Further, the lower spine and fan remain anchored to the bottom boundary

throughout the evolution, thus providing a pathway for post reconnection plasma

flow while in MHD case, the lower spine gets disconnected. Notably, a MFR with

QSLs as overlying field lines is found at the location of flare saturation in the

SDO/AIA images. The Hall MHD simulation shows faster slipping reconnection

of the flux-rope footpoints and overlying QSLs magnetic field lines. Consequently,

the overlying magnetic field lines rise and reconnect in corona, thereby providing
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path for plamsa ejection. This finding agrees with the observed eruption in western

part of AR. Contrarily, such significant rise of the flux rope and overlying field lines

is absent in the MHD simulation, thus signifying the reconnection to be slower in

MHD. Interestingly, such field line dynamics suggests a distinct mechanism of

flux rope eruption in 3D, which is not widely documented in the literature. The

result further emphasizes that null points and true separatrices in 3D may not be

required for eruptive flares. Additionally, “fish-bone-like structure” surrounding a

null line is found in the eastern part of the AR. A salient feature captured only

in the Hall MHD is that rotating magnetic field lines agree remarkably with the

observed circular plasma motion, both spatially and temporally.

Overall, investigations of Hall effect on 3D magnetic reconnection employing

the numerical simulations initiated with both the analytical and observed magnetic

fields display the significant changes in the magnetic structures around and on

the reconnection site which subsequently alter the large scale dynamics making

the evolution faster. Therefore, this thesis provides the Hall MHD as potential

description to understand the faster reconnections in 3D with particular emphasis

on the effects of structural dynamics at small scale on large scale structures.

Keywords: Magnetohydrodynamics, Hall magnetohydrodynamics, Magnetic

reconnection, Solar active regions, Solar magnetic fields, Solar flares, Solar coronal

mass ejections, Numerical simulations.
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Chapter 1

Introduction

Most of the observable matter in the universe is predominantly in the form of

magnetized plasma. Generally, the astrophysical plasmas are magnetized, having

high Lundquist number (S = LvA/λ; L being the length scale of magnetic field

variation, vA being the Alfvén speed and λ being the magnetic diffusivity) caus-

ing the Alfvén’s flux-freezing theorem (Alfvén, 1942) (discussed in detail later) to

be satisfied. Dynamical evolution of such plasmas is often described by the ideal

magnetohydrodynamics (MHD). Validity of frozen-in condition on magnetic field

lines being tied to plasma parcels make it easier to study the dynamical evolution

by tracking the motion of either one of them. However, unprecedented obser-

vations of explosive energy release phenomena such as flares and coronal mass

ejections (CMEs) in the various astrophysical systems reveals the diffusive nature

of plasma—breakdown of ideal MHD. The distinct fundamental process through

which the magnetic energy is converted into other forms of energy viz. heat, ki-

netic energy of plasma flow and particle acceleration with the re-arrangement of

magnetic field line connectivity is known as magnetic reconnection. In presence of

electrical resistivity, the flux-freezing condition gets violated and makes the plasma

diffusive.

In this Chapter, we present a brief historical overview of magnetic reconnection

and introduce the concept. The potential sites of magnetic reconnection in two-

dimension (2D) and three-dimension (3D) are described along with the aspects of

2D and 3D reconnection. Then, finally we present the Hall magnetohydrodynam-

ics (Hall MHD) as a potential description to understand the fast and impulsive
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2 Chapter 1. Introduction

magnetic reconnection. The Chapter ends with the discussion of thesis objectives

and its organization.

1.1 Magnetic reconnection: Historical Overview

Historically, the notion of magnetic reconnection stems from the ideas, first intro-

duced by Giovanelli (1946) motivated from solar flare observations. Later on, the

discussions between Giovanelli and Fred Hoyle, lead Hoyel to propose the process

occurring in Earth’s magnetosphere (auroral substorms) due to the interaction be-

tween solar wind and Earth’s magnetic field (Hoyle, 1949). Their realization that

the electric fields near magnetic X-type neutral point are responsible for the heat-

ing and particle acceleration might be based on the fact that particle acceleration

is only possible when a component of electric field is parallel to the magnetic field.

Later, Cowling (1953) suggested the solar flares owing to ohmic dissipation need a

current sheet of only a few meters thick. Shortly, Dungey (1953) recognized that

the magnetic reconnection process occurring in Earth’s magnetic field is identical

to the one in the solar flares. For the first time, Dungey (1953) demonstrated

that the collapse of the X-type neutral points can actually form current sheets and

proposed a cycle from magnetic reconnection at the magnetopause to reconnec-

tion at magnetotail in Earth’s magnetosphere—specified as ‘Dungey cycle’. It was

Dungey who introduced the concept of “lines of force can be broken and rejoined”

for the first time. In his pioneering works on the current sheets formation, Dungey

treated the self-consistent nature of both plasma and magnetic fields rather than

simple motion of charged particles in electric and magnetic fields. Based on the

fact that moving charge particles produce the electric and magnetic fields, he used

the MHD equations to investigate the effect of such fields where the Maxwell’s

equations are combined with Navier-Stokes equations.

Afterwards, Sweet (1958) and Parker (1957) proposed a two dimensional (2D)

steady-state theoretical model of magnetic reconnection within MHD framework.

Parker (1957) formulated the scaling laws for the model and coined the term “re-

connection of field lines” or “merging of magnetic fields”. Sweet-Parker mechanism

of reconnection is detailed in Section 1.3.1.1. The rates at which magnetic energy
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1.2. Concept of Magnetic Reconnection: An MHD Approach 3

gets converted into heat and plasma flow, is far too slow (109 years) to account

for the energy release during solar flares. Subsequently, Petschek (1964) devel-

oped a “fast reconnection” model to account for solar flares which, is discussed in

Section 1.3.1.2.

Initial developments of magnetic reconnection models were in 2D within MHD

framework. Substantial amount of works have accomplished important aspects of

2D reconnection over several decades. However, understanding magnetic reconnec-

tion in three-dimensions (3D) is essential since the magnetic field in astrophysical

plasmas is inherently 3D. Attempt to define magnetic reconnection have been made

by Vasyliunas (1975); Sonnerup (1979), and Axford (1984) which will be discussed

later in this chapter. These definitions are important in understanding existing

scenarios of 3D magnetic reconnection and form the basis of general magnetic re-

connection (GMR) theory suggested by Schindler et al. (1988); Hesse & Schindler

(1988).

1.2 Concept of Magnetic Reconnection: An MHD

Approach

As described above, the dynamical evolution of astrophysical plasmas is given

by MHD description. Generally, MHD equations are a set of coupled differential

equations combining the Maxwell’s equations of electromagnetism and Navier-

Stokes equations of fluid dynamics. MHD description of plasma is valid when the

characteristic length and time scales of the system are much larger than the ion

gyroradius and ion gyroperiod respectively. The set of MHD equations and their

physical interpretation are given as following. Notably, here and hereafter, we use

SI units except for numerical simulations carried out where cgs and dimensionless

units are used.

1.2.1 MHD Equations

� Conservation of mass: Mass continuity equation

Dρ
Dt

+ ρ(∇ · v) = 0 or
∂ρ

∂t
+∇ · (ρv) = 0 , (1.1)
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where
D
Dt
≡ d

dt
is the total convective derivative, i.e., DDt = ∂

∂t
+v ·∇; ρ is the

plasma density, and v is the plasma flow velocity. This equation implies that

if mass flows into the system (∇·(ρv) < 0) from the surrounding, the density

increases (∂ρ
∂t
> 0) whereas if mass flows out of the system (∇· (ρv) > 0) the

density decreases (∂ρ
∂t
< 0).

� Conservation of momentum: Momentum balance or force balance equation

ρ
Dv

Dt
= −∇p+ J×B + ρν∇2v , (1.2)

where p is the thermal pressure, J is the current density, B is the magnetic

field, and ν is the kinematic viscosity of fluid.

� Electromagnetic induction equation

∇× E = −∂B

∂t
, (1.3)

where E is the electric field.

� Ampere’s law

∇×B = µ0J , (1.4)

where µ0 is the permeability of vacuum.

� Ohm’s Law

E + v×B = N , (1.5)

where N includes the forcing terms which will be discussed shortly.

� Solenoidality of magnetic field

∇ ·B = 0 , (1.6)

� Energy equation
D
Dt

(
p

ργ

)
= 0 , (1.7)

where γ = 5
3

is the specific heats ratio for an adiabatic equation of state.

paulchar
Note
This form of the viscous term Navier-Stokes Equations is for incompressible fluid; should be mentioned explicitly



1.2. Concept of Magnetic Reconnection: An MHD Approach 5

Combining Faraday-Maxwell’s equation (Equation 1.3) and Ohm’s law (Equa-

tion 1.5) essentially gives one of the fundamental MHD equation, namely, induc-

tion equation. The induction equation for ideal Ohm’s law E + v×B = 0 can be

written as :
∂B

∂t
= ∇× (v×B) . (1.8)

If the resistive Ohm’s law is considered E + v×B = ηJ, where η is the electrical

resistivity, then the induction equation takes the following form

∂B

∂t
= ∇× (v×B) + λ∇2B , (1.9)

where λ ≡ η

µ0

is the magnetic diffusivity. The first term on right hand side

of the above equation is convective or advection term and the second term is

resistive diffusion. The ratio of advection to resistive diffusion terms is known as

magnetic Reynold’s number, given by RM = L0V0/λ; L0 being the length scale

over which magnetic field varies and V0 being the characteristic speed. It provides

the useful information about the flow and magnetic field coupling in plasma, e.g.

if RM >> 1 (ideal limit) the advection processes govern the dynamics while the

diffusion becomes unimportant, but if RM << 1 (non-ideal limit) then the diffusive

processes become significant.

1.2.2 Ideal limit (RM >> 1)

The concepts of magnetic flux and magnetic field line conservation are essential to

understand magnetic reconnection. Central to ideal MHD limit, both the magnetic

flux and magnetic field lines are conserved which is discussed in the following.

1.2.2.1 Conservation of magnetic flux

In the limit of large magnetic Reynold’s number (RM >> 1), Alfvén’s theorem

(Alfvén, 1942) states that if magnetic flux through any closed curve is conserved

then the magnetic field moves with the plasma as if the field is “frozen-in” or tied

to the plasma parcels (Priest, 2014). Proof of this theorem can be presented by

considering magnetic flux Φ through an area S of plasma restricted by a closed
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curve Γ :

Φ =

∫∫
S

B · da , (1.10)

where da is an infinitesimal area S. If B is an explicit function of time or/and

the contour line of this plasma element change, then the change in total magnetic

flux can be due to the change of magnetic field strength following from the MHD

equations (Φ
′
) and due to the area change of plasma element (Φ

′′
) so that :

dΦ

dt
=
dΦ

′

dt
+
dΦ

′′

dt
, (1.11)

where
dΦ

′

dt
=

∫∫
S

∂B

∂t
· da. (1.12)

Now, let us consider a small change of the area da due to plasma motion withe v

velocity in time interval dt, then:

da = v dt× dl , (1.13)

where dl is an infinitesimal length element on contour Γ. Then, the change in

magnetic flux due to area change can be given as

dΦ
′′

= B · da , (1.14)

dΦ
′′

= B.v× dl dt ,

(1.15)

using the vector identities A · (B×C) = B · (C×A) = C · (A×B) and A×B =

−B×A leads to

dΦ
′′

= −dt(v×B) · dl , (1.16)

then the rate of change of flux due to area change is

dΦ
′′

dt
= −

∫
Γ

(v×B) · dl , (1.17)
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employing Stoke’s curl theorem in Equation 1.17 and substituting values of
dΦ

′

dt

from Equation 1.12 and
dΦ

′′

dt
in Equation 1.11

Figure 1.1: Conservation of magnetic flux through surface S, if the contour Γ1 is
deformed by plasma flow to make contour Γ2, then the flux through Γ1 at t1 is
equals to flux through Γ2 at t2.

dΦ

dt
=

∫∫
S

(
∂B

dt
−∇× (v×B)

)
· da . (1.18)

For an ideal plasma (RM >> 1), the right hand side vanishes in the above equation,

therefore implying the conservation of magnetic flux through S. Figure 1.1 depicts

the flux-conservation through a surface S, where the field lines lying on surface S

within contour Γ1 at t1 remain on the same surface even after the deformation of

Γ1 into Γ2 at t2 by plasma motions.

1.2.2.2 Conservation of magnetic field lines

In ideal plasmas, conservation of magnetic field lines follows from the conservation

of magnetic flux. Concept of magnetic field lines can be illustrated by writing

induction equation in convenient form; using the vector identity* along with the

solenoidality condition on magnetic field (B)

∂B

∂t
+ (v · ∇)B = (B · ∇)v−B(∇ · v) , (1.19)

*∇× (v×B) = (B · ∇)v + v(∇ ·B)− (v · ∇)B−B(∇ · v)
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and combining it with the mass continuity Equation 1.1. In Equation 1.19, the first

term on right-hand side indicates the magnetic field strength increases owing to

either accelerating plasma motion along the field or the shearing motion normal to

the field causing field to change direction by increasing the field component along

the flow direction. The second term on right-hand side suggests the decrease

and increase in the field strength depending upon the expansion (∇ · v > 0) and

compression ∇ · v < 0) of plasma respectively. Substituting the value of ∇ · v in

Equation 1.19 from mass-continuity equation

d

dt

(
B

ρ

)
=

(
B

ρ
· ∇
)

v , (1.20)

To visualize Equation 1.20 resulting in field lines co-moving with plasma, let us

take a length element δr along the magnetic field line moving with plasma. The

plasma velocity at one end of length segment be v and at another end let velocity

be v+δv; then δv= (δr · ∇)v. Then, the rate of change of length element (δr)

within time interval dt can be expressed as

dδr

dt
= δv = (δr · ∇)v , (1.21)

which has the same form as of Equation 1.20, thus indicating that if vector
B

ρ
and

length element δr are parallel at any time, will remain to do so for all the time.

Hence, implying any two plasma parcels connected by the magnetic field line will

remain connected for all the time in ideal plasmas—conservation of magnetic field

lines.

1.2.3 Nonideal/diffusive limit (RM << 1)

Any non-ideal term like resistive diffusion having form; N = ηJ = η∇ × B on

the right-hand side of Equation 1.5, leads to the induction equation of form Equa-

tion 1.9. In the nonideal limit (RM << 1), the induction equation has the following

form
∂B

∂t
≈ λ∇2B. (1.22)
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A straightforward integration of Equation 1.22 yields

B = B0 exp

(
− t

τD

)
(1.23)

where τD ≈ (L0
2/λ) represents the diffusion time scale over which magnetic field

lines diffuse out of the concerned plasma volume. Generalizing for non-ideal plas-

mas, further a flux transport velocity can be defined with a constraint that it

should have same flux-preserving characteristics as that of ideal MHD, i.e., w

should follow
∂B

∂t
= ∇× (w×B) , (1.24)

Nevertheless, using non-ideal Ohm’s law (Equation 1.5) in Equation 1.3 leads to

∂B

∂t
= ∇× (v×B−N) . (1.25)

On comparison of right-hand sides of above two equations the nonideal term can

be expressed as

N = u×B +∇Φ , (1.26)

where u is the slippage velocity given by u = v − w and Φ is a scalar potential.

Combining Equation 1.5 and Equation 1.26 gives

E + w×B = ∇Φ , (1.27)

such that the flux velocity w is

w = v +
(N−∇Φ)×B

B2
, (1.28)

Since the flux transport velocity is not unique, its behavior depends on the par-

ticular magnetic field configuration under consideration which will be discussed in

detail in Section 1.4. In ideal case, w = v, but for any nonideal term w 6= v.

The reconnection involves a localized region where diffusion occurs having global

effects.



10 Chapter 1. Introduction

1.3 Magnetic reconnection in two-dimensions (2D)

According to the historical overview presented in Section 1.1, features central to

the concept of 2D magnetic reconnection are current sheets and magnetic neutral

points. Current sheet is characterized as a narrow layer of current about which

direction of magnetic field change. Collapse of magnetic X-type neutral points

leads to the formation of current sheet. We describe both the magnetic null point

and current sheet one by one subsequently.

Figure 1.2: Panels (a) and (b) show the red and black field lines prior to and
after the reconnection. In panel (a), red field lines connect region 1 → 1

′
and

black field lines connect region 2 → 2
′
. The blue dashed line is separatrix which

separates topologically distinct regions. X-type null point is represented by the
intersection of two separatrices in both the panels. The green arrows depict the
converging plasma flow perpendicular to the magnetic field lines. Panel (b) depicts
the topology of magnetic field lines after reconnection where the newly reconnected
field lines connect the regions 2→ 1 and 1

′ → 2
′
.

Hyperbolic X-type null points are the preferential sites of magnetic reconnec-

tion in 2D. Figure 1.2 (a) and (b) depict the red and black field lines having differ-

ent connectivities before and after the reconnection. Red field lines, directed from

1→ 1
′

and black field lines, directed from 2→ 2
′

(in panel (a)) are pushed by the

converging plasma flows perpendicular to field lines. The blue dashed line, namely

separatrix, separates the two distinct magnetic connectivity regions. Intersection
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of two separatrices is an X-type magnetic null point, where all components of mag-

netic field vanish implying |B| = 0. After reconnection at X-point, the resulting

field lines connect the region 2 → 1 and 1
′ → 2

′
. Therefore, the reconnection is

topological re-arrangement of magnetic field lines in 2D.

Generally, current-sheets are tangential discontinuities, arising due to the fail-

ure of smooth magnetic field in an infinitely conducting plasma. Through current-

sheets, magnetic field is tangential. To understand current-sheets in magnetized

plasma, let us consider the magnetic field varying along x direction and directed

towards z, i.e., B = Bz(x)ẑ then the associated current density from Ampere’s

law becomes

Jy =
1

µ0

∂Bz

∂x
, (1.29)

which signifies that a steep gradient in Bz with x gives rise to a strong current

density along the sheet (z− direction) and perpendicular to the field lines. Sponta-

neous development of current sheets in an infinitely conducting plasma at equilib-

rium is expected from Parker’s magnetostatic theorem (Parker, 1994). According

to this theorem the current sheets develop in the limit L0 → 0, causing the vol-

ume current density to intensify and gets confined in a surface across which the

magnetic field is discontinuous. A decrease in L0 in the presence of finite but non-

zero diffusivity λ locally reduces RM and makes the plasma resistive; indicating

the current sheets to be potential site for magnetic field diffusion which can host

reconnection.

1.3.1 Steady-state models of magnetic reconnection in 2D:

MHD framework

As discussed in Section 1.1, primarily, the efforts to model magnetic reconnection

theoretically were purely in 2D within MHD framework. Here, we describe two

famous models of magnetic reconnection; Sweet-Parker and Petschek.

1.3.1.1 Sweet-Parker Model

The first ever theoretical model of magnetic reconnection in 2D describing the

scaling laws for reconnection rate was developed by Sweet and Parker indepen-



12 Chapter 1. Introduction

dently. This model uses an order-of-magnitude approach to derive the reconnec-

tion rate. Basic assumptions of the model consist the incompressibility of fluid,

low plasma−β (where β is the ratio of kinetic pressure to magnetic pressure) and

steady-state

(
∂

∂t
= 0

)
(Choudhuri, 1998), which leads to the reduced set of MHD

equations given as following

v · ∇ρ = 0 (1.30)

ρ(v · ∇)v = J×B (1.31)

0 = ∇× (v×B) + λ∇2B (1.32)

∇ ·B = 0 (1.33)

Figure 1.3: A schematic representation of Sweet-Parker mechanism of magnetic
reconnection. The blue shaded rectangular region is the diffusion region of width
2d and length 2L. Black lines represent magnetic field lines and the red arrows
represent the plasma flow directions.

A diffusion region or current sheet of length 2L and width 2d, sandwiched

between the oppositely directed magnetic field ±Bi was considered. The plasma

flow vi is assumed in such a way that it pushes the oppositely directed magnetic

field lines toward the diffusion region from both the sides (see Figure 1.3) and vo

is the outflow speed at both ends of the sheet. For an uniform mass density ρ,

conservation of mass (from Equation 1.30) suggests that the rate at which mass

enters the sheet ρ(4L)vi from both sides must be equal to the rate at which it
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leaves at both ends of the sheet ρ(4d)vo, i.e.,

Lvi = dvo . (1.34)

From the flux balance, we have

viBi = voBo (1.35)

By order-of-magnitude analysis, the current density is J≈ Bi

µod
and the Lorentz

force along the diffusion region is (J×B)x ≈ JBo =
BoBi

(µod)
. Lorentz force acceler-

ates the plasma from rest at the neutral point to vo over a distance L and so, by

Equation 1.31 where the plasma pressure gradient is neglected, we have

ρ
v2
o

L
≈ BoBi

µod
. (1.36)

Since the ∇ ·B = 0 and dividing Equation 1.35 by Equation 1.34, gives

Bi

L
≈ Bo

d
, (1.37)

and Equation 1.36 then gives

vo =
Bi√
ρµo
≈ vA . (1.38)

which is the expression for Alfvén speed vA. From Equation 1.32, the advection

term having order
viBi

L
in the inflow region has to be balanced by the diffusion

term of the order
λBo

d2
in the outflow region and using Equation 1.37 leads to

vi =
λ

d
. (1.39)

From Equation 1.34, Equation 1.38 and Equation 1.39, the reconnection rate is

defined as the ratio of inflow speed to outflow speed, given as

vi
vo

=
1√
S
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where S = LvA/λ is the Lundquist number�. For typical solar coronal parameters,

i.e., L ≡ 108m, vA ≡ 106 ms−1, and λ ≡ 1 m2s−1 (Aschwanden, 2005), the recon-

nection rate is 10−7 which is too slow to explain the observed explosive transients

on the Sun, such as solar flare.

1.3.1.2 Petschek Model

Petschek (1964) proposed that the rate at which magnetic flux enters the diffusion

region can be much faster, if the extent of diffusion region between the oppositely

directed magnetic field is much smaller than the system or global length scale.

He suggested that if L is the length of diffusion region and Le is the system scale

length then L << Le. Let vi and Bi be the plasma flow and magnetic field in

Figure 1.4: (a) A sketch of Petschek reconnection mechanism. The external mag-
netic field (Be) over a large distances Le is carried towards the diffusion region
(grey shaded) by a flow ve towards a diffusion region (shaded) of width 2l and
length 2L. Near diffusion region, the inflow field is Bi and inflow speed is vi. The
slow shocks (red) heat and accelerate the plasma on the left and right sides of the
diffusion region. (b) A schematic of upper inflow region. (Figure adapted from
Pontin & Priest (2022))

the inflow region. Diffusion region is surrounded by an external region where the

plasma flow is ve and magnetic field is Be. Then the reconnection rate (Me) and

Lundquist number (Se) in the external region will be

Me =
ve
vAe

, (1.40)

Se =
LevAe
λ

. (1.41)

Assuming steady-state, magnetic flux conservation leads to viBi = veBe. There-

�For vo = vA, the Magnetic Reynolds number RM is called as Lundquist number.
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fore,

Mi

Me

=
B2
e

B2
i

. (1.42)

The magnetic field in the inflow region is assumed to be uniform and potential

(current-free J = 0). Specialty of Petschek model is that the four slow-mode

MHD shock waves (standing in the flow) are responsible for the plasma acceleration

parallel to the shock front (as shown in Figure 1.4),i.e., ve = vs where vs is the

shock speed.

As shown in Figure 1.4, Bi is weakly curved near diffusion region in comparison

to uniform Be (far away from diffusion region) due to the normal component Bn

of shocks on both sides. Let the shock speed be vs which is given by vs =
Bn√
ρµo

.

Owing to shock in the region between L and Le, By = 2Bn and in the region

between −L and −Le, By = −2Bn on x axis (Figure 1.4(b)), the shock inclination

is negligible elsewhere. At the diffusion region (between −L to L), Bn vanishes.

The total magnetic field in inflow region is the sum of two components, one is Be

along x axis and the another is achieved by solving Laplace’s equation in the upper

half of diffusion region. Magnetic field at the inflow region (Bi) can be given as

Bi = Be −
4Bn

π
log

Le
L

(1.43)

Using ve = vs relation and dividing the numerator and denominator of the second

term on the right hand side of above expression by
√
ρµo leads to

Bi = Be

(
1− 4Me

π
log

Le
L

)
. (1.44)

An increase in reconnection rate Me causes an increase in shock angle while the

size of diffusion region decreases. Petschek suggested that if the value of Me is

large enough then the process seizes off. He derived the expression for reconnection

rate (M
′
e)

M
′

e ≈
π

8 logS
, (1.45)

which is much faster than the reconnection rate given by Sweet-Parker model.

For solar flares, M
′
e ≈ 0.1-0.001. Hence, Petschek model is also known as fast
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reconnection model.

1.4 Magnetic reconnection in three-dimensions

(3D)

As described in Section 1.3, the 2D models of magnetic reconnection are primarily

associated with the X-type null point geometry (Pontin & Priest, 2022), which

is relatively simpler than the far more complex and richer variety of preferential

reconnection sites in 3D. Toward the aim of this thesis to investigate the Hall effect

in magnetic reconnection, an understanding of reconnection sites in 3D is essential.

Therefore, in this section, we elaborate on the various aspects of 3D reconnection,

which are essential for our works presented in Chapter 5 and Chapter 6. We begin

with a brief historical development of definition for 3D reconnection, followed by

the description of reconnection sites in 3D such as null points, separator, quasi-

separatrix-layers (QSLs), and hyperbolic flux tubes (HFTs).

Several definitions of magnetic reconnection in 3D exist in literature. For ex-

ample, the attempts to define reconnection in 3D were primarily made by Vasyliu-

nas (1975), Sonnerup (1979), and Axford (1984). According to Vasyliunas (1975)

plasma flow across a separatrix surface is required for reconnection whereas Son-

nerup (1979) suggested the electric field along the X-type neutral line or separator

in 3D is necessary for reconnection. On the other hand, Axford (1984), proposed a

change in magnetic field line “connection” between plasma elements owing to the

localized breakdown of the “frozen-in field” as the basis of magnetic reconnection.

Here “connection” means that plasma elements which are at one time connected

by a single magnetic field line remain connected at subsequent times. Vasyliunas’s

and Sonnerup’s definitions of magnetic reconnection require the identification of

separatrix surface in 3D which needs the magnetic field line tracing to their origin.

Identifying separator field line in 3D and distinguishing it from the surrounding

field lines in realistic scenarios is difficult (Birn et al., 1997). Nevertheless, Ax-

ford’s definition is general since it is not based on magnetic topology and does

not require the tracing of field lines to their origin. However, it requires to track

the temporal evolution of magnetic field line connection (Figure 1.5(a)) between
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plasma elements over a short time and possibly small distances. Axford’s definition

Figure 1.5: (a) Magnetic connection: Two plasma elements A and B connected
by a magnetic field line at time t1 remain to be connected by a magnetic field line
at any other time t2 under the plasma displacement. (b) Slippage: at time t1 the
plasma elements A and B are connected by a magnetic field line but at time t2
plasma elements exchange the magnetic field lines and do not remain connected
by a magnetic field line.

emphasizes on the exchange of magnetic field lines between the plasma elements,

i.e., the breakdown of magnetic connections—slippage of plasma elements from

magnetic field line. Later in 1988, this lead to the concept of general magnetic

reconnection (GMR) (Schindler et al., 1988) which assumes the localized nonide-

alness. According to GMR, reconnection in 3D is classified into two categories: 1.

Zero-B reconnection (|B| = 0 in the diffusion region), and 2. Finite-B reconnection

(|B| 6= 0 in the diffusion region).

Following the aforementioned categorization of reconnection and central to the

results presented in Chapter 5 and Chapter 6, further we discuss the 3D magnetic

null (site for Zero-B reconnection) and its structure and QSLs (site for Finite-B

reconnection).

� 3D null A linear 3D null is a point in three-dimensional vector space, where

all components of magnetic field vanish (B = 0) and the field increases

linearly away from the null point (Parnell et al., 1996). For example, in

Cartesian coordinates, the magnetic field B for a linear 3D null can be given
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as

B = xî+ yĵ − 2zk̂ , (1.46)

such that ∇ ·B = 0. The magnetic structure around a linear 3D null point

Figure 1.6: Magnetic structure around a 3D null point along with the spine curve
and fan surface. (adapted from Pontin & Priest (2022))

consists two families of field lines, namely, spine and fan (Priest & Titov,

1996). A schematic representation of magnetic field line structure around a

linear 3D null point is shown in Figure 1.6. Spine for the aforementioned

field is along z−axis along which the bundle of magnetic field lines approach

asymptotically whereas the receding field lines are tangential to a surface

known as fan plane (xy plane). Fan plane acts as separatrix surface since it

separates the distinct topological domains of magnetic field lines connectivi-

ties. If the field lines on fan plane radiate away from the null point then it is

referred as a positive null point while if they approach toward the null point

then it is referred as a negative null point (Pontin & Priest, 2022).

� QSL Reconnection in 3D can also take place without the null point. This

idea was already conceptualized by Schindler et al. (1988) where the recon-
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nection in the absence of null points was termed as finite-B reconnection.

Following Schindler et al. (1988), if the Ohm’s law given by Equation 1.5 is

considered where N is a finite non-ideal term due to either collisions, fluc-

tuations or particle inertia then this non-idealness can be important in a

localized region with sharp gradients. In the convenient form, N = ηJ can

be assumed for Ohmic dissipation.

Figure 1.7: Illustration of the slip running or slipping reconnection of magnetic field
lines in a numerical simulation of quasi-separator reconnection by Aulanier et al.
(2006). Positive and negative polarities of magnetic field are represented by the
pink and blue contours respectively on the bottom boundary. Four sets of magnetic
field lines (red, black, cyan and green lines) are integrated from fixed footpoints
and their conjugate footpoints gradually slip along arc-shaped trajectories from
one positive to another positive polarities.

For the finite-B reconnection to take place in 3D, the necessary and suffi-

cient condition is that the magnetic field be nonzero in the diffusion region

and B × (∇×N) = 0 (Schindler et al., 1988; Hornig & Schindler, 1996) at

a given point located in the diffusion region. These locations of enhance-

ment in current density (current-sheets) can host the reconnection. Owing

to the drastic change in magnetic field line connectivity (Demoulin et al.,

1996, 1997; Titov, 2007) strong currents may arise, therefore, QSLs serve

as preferential sites for 3D reconnection. In principle, this drastic change is

quantified by the Q−value known as squashing factor. For the explanation

of Q-value calculation, let us consider two footpoints P1(x1, y1) and P2(x2,

y2). The footpoints are mapped from P1 to P2 and the associated Jacobian
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is given by

D1,2 =


∂x2

∂x1

∂x2

∂y1

∂y2

∂x1

∂y2

∂y1

 =

a b

c d

 , (1.47)

owing to

Q =
a2 + b2 + c2 + d2

|Bn,1(x1, y1)/Bn,2(x2, y2)|
. (1.48)

where Bn,1(x1, y1) and Bn,2(x2, y2) are the components normal to the target

planes. According to Liu et al. (2016), Q > 2 is a criteria on squashing

degree to represent the location of QSLs. The regions having large Q−values

are prone to slip-running or slipping reconnection (Aulanier et al., 2006).

The illustration of slipping reconnection is given in Figure 1.7. Following,

the work of Aulanier et al. (2006), it can be seen in Figure 1.7 that the

four sets of magnetic field lines (red, black, green, and cyan) change the

connectivity from one positive to another positive polarity at the bottom

boundary exhibiting the slipping reconnection.

1.5 Observed manifestations of magnetic recon-

nection

As mentioned in Section 1.1, the discovery of magnetic reconnection was primarily

motivated from the spectacular observations of explosive transient events on the

Sun and auroral substorms in Earth’s magnetosphere. Since, these events are

manifestation of magnetic reconnection, therefore we present the brief overview of

properties and nature of such phenomena on the Sun as well as on Earth.

1.5.1 Explosive activities on the Sun

For this thesis, the solar coronal plasma has been selected as a prototype astro-

physical plasma which exhibit diffusive behavior in the form of solar flares and

CMEs. Solar flares are observed as intense brightening of any emission across the

electromagnetic spectrum occurring at a time scale of minutes (Benz, 2008). Typi-

cally, energy ranging from 1028−1032 ergs is released during the solar flares within
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Figure 1.8: Illustration of intensity profile during flare for several wavelengths. The
four phases, namely, pre-flare, impulsive, flash, and decay phases are indicated at
the top. The different phases have different temporal durations.

a time span of few minutes (Benz, 2008). Temporal evolution of a flare is classified

into four phases, namely the pre-flare, impulsive, flash, and decay phases. This

characterization of different phases is based upon the temporal evolution of differ-

ent emission profiles across the electromagnetic spectrum during a flare. Pre-flare

phase is characterized by the energy build along with the slow heating of coronal

plasma for which EUV and soft X-ray emission is detected. Impulsive phase of

the flare is marked by the sudden peak in the hard X-ray emission where most of

the energy is released and energetic particles are accelerated. Some high-energy

particles get trapped and produce intensive emissions in the radio. The thermal

soft X-ray and Hα emissions finally attain maxima after the impulsive phase, when

energy is more smoothly released, manifest in decimetric pulsations. Flash phase is

identified as the rapid increase in Hα intensity and line width and mostly coincides
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with the impulsive phase, although sometimes Hα may peak later. During the de-

cay phase the coronal plasma reaches the relaxed state except at the high corona

(> 1.2R�, where R� is the radius of Sun), where plasma ejections and shock

waves continue to accelerate particles, causing meter wave radio bursts. Afore-

mentioned phases of solar flare have been shown in Figure 1.8, adapted from Benz

(2008). Generally, magnetic reconnection is suggested to be responsible for such

Figure 1.9: Multiwavelength observations of a solar flare as observed by SDO/AIA
in six extreme ultraviolet (EUV) filters on eastern limb of the Sun on March 9,
2011.

sudden, rapid and intense energy release (Shibata & Magara, 2011). The strong

enhancement of Hα, ultraviolet (UV), and EUV emissions are the signature of re-

connection driven processes in solar corona. For example, one such enhancement

in EUV emissions from Sun during a solar flare is shown in Figure 1.9.

Coronal Mass Ejections are gigantic clouds of magnetized plasma erupting from

the solar corona into interplanetary space. The total mass and energy released

during a typical CME ranges from 1015-1016 g and 1027-1033 ergs respectively

(Vourlidas et al., 2002; Gopalswamy et al., 2004). Generally, CMEs show up

signatures in white light owing to Thomson scattering of photospheric light from

the free electrons of coronal and heliospheric plasma (Vourlidas & Howard, 2006;

Howard & Tappin, 2009) which can be observed using coronagraph. In white light

observations, mostly, CMEs have a three-part structure: a bright frontal loop

(i.e., a leading edge (Illing & Hundhausen, 1985; Vourlidas & Howard, 2006), a

dark cavity (low density, high magnetic field region (Low, 1996; Vourlidas et al.,

2013) and a bright core embedded in the cavity (Illing & Hundhausen, 1985);

cf. Figure 1.10. A near-consensus is that the magnetic reconnection plays an

important role in initiating CMEs (Low, 1996; Chen, 2011). It is widely accepted
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Figure 1.10: An observation of CME having classic three part structure: (a) bright
frontal loop or edge, (b) a dark cavity, and (c) bright core region as viewed by Large
Angle and Spectrometric Coronagraph Experiment (LASCO) on board Solar and
Heliospheric Observatory (SOHO) spacecraft. This figure is adapted from Müller
et al. (2013).

that most of the CMEs can be considered as erupting flux-rope systems, generating

the classic three-part structure. Therefore, in this thesis, we study the evolution

of magnetic flux ropes owing to magnetic reconnection and present the results in

Chapter 5.

1.5.2 Geomagnetic activity on Earth

Intense geomagnetic storms and substorms, observed near Earth are caused mainly

by large-scale solar eruptions (viz. flares, CMEs) and disturb the space weather.

Naturally, the magnetic field carried by these eruptions from Sun, couple the solar,

interplanetary and magnetospheric system as shown in Figure 1.11. Generally,

if the Earth directed CMEs carrying southward magnetic field component (Bz)

interact with the northward magnetic field of Earth on dayside (closest to the Sun),

then the magnetic reconnection can take place (Dungey, 1961). Subsequently,

the reconnected field is dragged by the solar wind—a continuous flow of plasma

and magnetic field away from the Sun into interplanetary space, where it gets

stretched on the night-side. Here it deposits magnetic energy to the magnetotail—
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Figure 1.11: An illustration of coupling between magnetospheric and interplane-
tary magnetic field (IMF), depicting the magnetic reconnection and energy injec-
tion into the night side magnetosphere. This energy injection causes the develop-
ment of ring current. (Figure adapted from Gonzalez & Tsurutani (1992).

the thin elongated region not facing the Sun. Consequently, on nightside the

magnetic fields are configured in such a way that they are oppositely directed about

magnetotail, (on the right hand side of Figure 1.11), so that they can reconnect.

Then the superheated plasma from maggnetotail region flows back toward Earth,

where it can penetrate all the way down to Earth’s atmosphere and dissipate its

energy to give rise aurorae. This cyclic process of magnetic reconnection at the

magnetopause to reconnection at magnetotail is specified as the “Dungey cycle”.

The magnetotail reconnection causes the charge particles to get trapped in Earth’s

magnetic field where they gyrate following the Earth’s magnetic field curvature

and tend to move along the equatorial plane. The ions move westward (i.e. from

midnight toward dusk) and electrons move eastward (i.e. from midnight toward

dawn) ultimately generating the toroidal shaped ring current in westward direction

surrounding the Earth. This ring current, in turn, induces the magnetic field which

tends to reduce the horizontal component of Earth’s magnetic field, responsible

for the geomagnetic storm.
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1.6 Importance of the Hall effect during mag-

netic reconnection: Hall MHD

As mentioned in Section 1.3, Sweet-Parker model is too slow to explain the recon-

nection rates for solar flare at the same time it does not account for the impulsive

nature owing to steady-state assumption. While the Petschek model being steady-

state gives fast reconnection rates but it can not explain the impulsive nature too

and remains debatable since it is not realizable in the natural plasmas; see e.g.,

Biskamp (2000); Wang et al. (2000). Previous works (Terasawa, 1983; Scudder,

1997) suggest that in high-S plasmas, single-fluid MHD framework does not dif-

ferentiate between the relative motions of different species. Considering Hall term

(J × B) in the Ohm’s law can be useful attempt in this direction which leads to

the Hall MHD description. In various astrophysical bodies, viz. dense molecular

clouds, white dwarfs, or accretion disks, Hall effect plays a key role in the mag-

netic field dynamics; see, e.g., Mininni et al. (2003) and references therein. Over

the past few years many studies (Ma & Bhattacharjee, 2001; Birn et al., 2001;

Hesse et al., 2001; Otto, 2001) employing numerical simulation of Hall reconnec-

tion have found the fast reconnection rate or increase in reconnected flux. In work

of Bhattacharjee et al. (2003), the Hall MHD simulation exhibits impulsiveness.

Hall MHD recognizes the importance of Hall effect in a generalized Ohm’s law.

Fundamentally magnetic reconnection is a multiscale process, so the identification

of reconnection scale length is important which depends upon the particular system

under consideration. To elucidate this, the reconnection scale length for a solar

flare can be calculated by approximating the diffusion timescale (τd) with the

impulsive rise time in hard X-ray emission which is of the order 102− 103 s. Thus,

the reconnection scale length Lη =
√
τdλ, for solar flare is ≈ 32 m where diffusion

or reconnection time τd = 103 s and λ = 1 m2s−1. Then the Lundquist number

becomes S ≈ 107. In solar corona, the ion-inertial scale length is δi = c/ωpi ≈ 2.25

m (Priest & Forbes, 2000) where ωpi =

√
ne2

mε0
being the plasma ion frequency, n is

number density, m is mass and ε0 is the permittivity of free space. For an electric

field of form

E + v×B = ηJ +
J×B

ne
, (1.49)
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where

(
J×B

ne

)
is the Hall term, the dimensionless induction equation can be

written as following

∂B

∂t
= ∇× (v×B)− 1

S
∇× J− δi

Lη
∇× (J×B) , (1.50)

using the following normalizations

B −→ B0B, v −→ vAv, t −→ τAt, ∇ −→ ∇
L0

, J −→ B0

µ0L0

J . (1.51)

An order analysis of the above dimensionless induction equation (Equation 1.50)

at reconnection scale length (i.e., L0 = Lη) leads to the order of dissipation term

1/S ≈ 10−7 being much smaller than the order of Hall term δi/L0 ≈ 10−2. Mag-

netic reconnection being the underlying reason behind solar flare and other coronal

transients, Hall effect may play important role during reconnection. From Equa-

tion 1.50, it can be emphasized that the resistive dissipation term and Hall terms

are important only when the strong current densities or magnetic field gradients

exist. Since the order of magnitude for current density can be written as J ≈ B/L

and the current (J) will be large only if the length scale L is sufficiently small.

In case of solar coronal plasma, if the characteristic scale length L is of the order

of megameter (Mm) then the currents are very small and ignorable but if it is re-

connection scale length the currents have sufficiently large values. This reduction

in length scale in turn leads to the reduction in Lundquist number signifying the

diffusion to be important and the order of Hall effect being higher than diffusion

term should not be ignored.

1.7 Properties of Hall effect on magnetic recon-

nection

Standardly, if the magnetic field is applied to a current carrying conductor in the

direction perpendicular to current then a transverse electric field is developed in

the conductor and this phenomenon is known as the Hall effect (Ramsden, 2006).

Hall effect in the reconnection physics is well known to give fast reconnection rates.
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In literature, the famous Geospace Environment Modelling (GEM) reconnection

challenge by Birn et al. (2001) depicted the fast reconnection rates of the order of

near Alfvènic inflow velocities with the Hall effect included in the different mod-

els ranging from fully particle-in-cell (PIC) codes to traditional resistive MHD

codes. Numerical simulations in GEM challenge assumed an initial Harris current

Figure 1.12: The temporal variation of reconnected magnetic flux from a range
of numerical simulations with different models including full particle, hybrid, Hall
MHD, and MHD, adapted from Birn et al. (2001).

sheet equilibrium perturbed by the magnetic island to initiate the dynamics. The

Figure 1.12, taken from Birn et al. (2001), shows the temporal variation of re-

connected magnetic flux for different simulations from fully particle, hybrid, Hall

MHD and MHD models. The slope of reconnected magnetic flux versus time curve

gives the reconnection electric field. As evident from Figure 1.12, all the models

including Hall effect give the approximately same and larger reconnection rate as

compared to MHD. Noticeably, simulation results for the models including Hall

effect emphasize that the reconnection rate is almost insensitive to the particular

mechanism (thermal motion of particle, electron inertia or resistivity) responsible

for the breakdown of frozen-in condition.

According to Bhattacharjee et al. (2003), the observed impulsive phase of a

solar flare imposes an important constraint on any magnetic reconnection model

explaining flare that not only the timescale of growth rate of current density and

electric field has to be fast but the time derivative should also increase abruptly.
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Figure 1.13: Growth rate (time evolution) of amplitudes of (a) current density Jy
and (b) electric field E|| for the Hall MHD and MHD simulations depicted by solid
and dotted curves respectively from Bhattacharjee et al. (2003).

In their work, a comparative study of Hall MHD and MHD simulations initiated

with a 2D solar like magnetic arcade configuration revealed the sudden and fast

growth rate of current density and electric field during the Hall MHD evolution—

signifying greater degree of impulsiveness, as shown in Figure 1.13 (adapted from

Bhattacharjee et al. (2003)).

Hall effect being important at ion-inertial length scale cause the decoupling of

ion and electron motion. Consequently, in the ion diffusion region the ions diffuse

out from the magnetic field line and plasma flow is frozen into the electron fluid

only. To elucidate, let us consider the induction equation (Equation 1.50) and

ignoring the resistive diffusion term, then a velocity can be defined as

(
v− δi

Lη
J

)
by combining first and last terms on the right hand side and then, the induction
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equation can be written as

∂B

∂t
= ∇× (w×B) (1.52)

where w =

(
v− δi

Lη
J

)
is the electron flow velocity. Hall term, being ideal, does

not cause any change in the magnetic energy and helicity rates (Priest & Forbes,

2000; Liu et al., 2022). However, following Hornig & Schindler (1996), the ve-

locity w conserves magnetic flux (Schindler et al., 1988) and topology (Hornig &

Schindler, 1996) since field lines are tied to it. Consequently, field lines slip out

from the fluid parcels advecting with velocity v to which the lines are frozen in

ideal MHD. Importantly, the resulting breakdown of the flux freezing is localized

to the region where current density is large and the Hall term is effective. Because

of the slippage, two fluid parcels do not remain connected with the same field lines

over time—a change in field line connectivity. Quoting Schindler et al. (1988),

such localized breakdown of flux freezing, along with the resulting change in con-

nectivity, can be considered as the basis of reconnection Axford (1984). Additional

slippage of field lines occurs in the presence of resistive diffusion term, but with a

change in magnetic topology.

Apart from modeling efforts to explore the role of Hall effect on magnetic re-

connection, efforts have also been made to observe the magnetic reconnection in

Earth’s magnetosphere with an aim to probe the ion diffusion region physics. The

Magnetospheric Multiscale Mission (MMS) has provided important insights into

the ion diffusion region physics. Mozer et al. (2002) proposed a model of magnetic

reconnection including Hall effects which is purely based on the observations. A

schematic picture of the diffusion region (Mozer et al., 2002) surrounding the re-

connection site is depicted in Figure 1.14. In Figure 1.14, the magnetosheath on

left and magnetosphere on right side have oppositely directed magnetic field lines

(thick black lines directed along z) pointing southward (down) on left and north-

ward (up) on right side. The magnetic field lines are convected along x direction

toward magnetopause by inflow. When the field lines are in white part (away from

diffusion region), the ideal MHD is satisfied and the electric field have dominant

contribution from convection term such that the resultant electric field −vxBz is in
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Figure 1.14: A sketch of the diffusion region around the magnetic reconnection site
for a symmetric system (adapted from Mozer et al. (2002)). The green line shows
the approximate trajectory of the Polar satellite for an observed event shown in
Figure.

positive y direction and this out-of-reconnection plane field is known as reconnec-

tion electric field. In a region where the gyrating ions reach a distance apart which

is equal to their gyroradius, they get demagnetized and decouple from magnetic

field but the electrons continue to be frozen to the magnetic field due to their

gyroradius being smaller than that of ions, is known as ion diffusion region. There

is a net current J = nq(vi − ve) generated by the bulk flow of electrons (shown

by dashed curves in Figure 1.14) in the ion diffusion region along x direction, also

known as Hall current. This in-plane (xz plane) Hall current generates an out-of-

reconnection plane magnetic field component along y direction which is known as

Hall magnetic field. The nature of this out-of-reconnection plane Hall magnetic

field is quadrupolar owing to the in-plane current which wraps the associated mag-

netic field around it according to the Ampere’s law. Consequently, it causes the

Hall magnetic field to point out of the plane (along positive y direction) on upper

right and lower left while pointing into the plane (along negative y direction) on

upper left and lower right. Since, the ion diffusion region has a width equal to
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the ion-inertial scale length δi, the Hall term J × B gives rise to an electric field

in positive y direction which is equal to JxBz which is in the same direction as

that of convective electric field. Alongside, the Hall magnetic field along y di-

rection and current along z direction together produce Hall electric field along x

direction which is depicted by two oppositely directed red arrows pointing toward

the magnetopause on either side of it. In summary, the Hall effect play a crucial

role during magnetic reconnection by giving fast reconnection rates, greater de-

gree of impulsiveness, and altering the dynamics. Main properties of Hall-assisted

reconnection are the generation of an out-of-reconnection plane quadrupolar Hall

magnetic field, in-plane Hall current and Hall electric field. Although, the Hall

effect in 2D or 2.5D magnetic reconnection is well studied but the understanding

on its role in 3D reconnection lacks.

1.8 Motivation and Organization of the Thesis

In the above backdrop, presented in Section 1.6 and Section 1.7, the motivation

of this thesis is to study the role of Hall effect on magnetic reconnection in astro-

physical plasmas, in general, and particularly in solar coronal plasma. To fulfill

the aim, the specific objectives of this thesis are outlined below:

1. Development of a 3D Hall MHD solver by modifying the existing compu-

tational model EULAG MHD and benchmark the model to validate the

properties of Hall reconnection.

2. Understanding the Hall-assisted reconnection dynamics of a magnetic flux

rope by means of Hall MHD simulation and its comparison with the MHD

evolution.

3. Comparative study of the possible magnetic reconnections in 3D causing

the observed flare brightening in the lower solar atmosphere employing the

data-constrained Hall MHD and MHD simulations.

Based on the work carried out to accomplish the above mentioned objectives,

the thesis is organized into seven chapters. A brief description of each chapter is

given below.
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Chapter 1: Introduction

This Chapter starts with the historical overview of magnetic reconnection followed

by introduction to the concept of magnetic reconnection. A revisit of the exist-

ing 2D models of magnetic reconnection and reconnection rates within the MHD

framework is presented. Their limitation to explain the impulsive and fast nature

of explosive events are described. Subsequently, the 3D magnetic reconnection and

sites for reconnection in 3D are discussed. Then the observational manifestations

of reconnection on Sun and Earth are presented as examples. A brief overview of

the previous efforts to achieve the fast reconnection rate is discussed briefly. Later,

the motivation behind Hall MHD is described with the emphasis on inevitability

of Hall effect in magnetic reconnection in the solar corona. The properties of Hall

effect on magnetic reconnection are described in detail. Lastly, the chapterwise

organization is presented.

Chapter 2: Solar Coronal Magnetic Field Models and Coronal Transient

Observations

The solar coronal plasma has been selected as a prototype astrophysical plasma

due to the wealth of observational data. This Chapter focuses on the coronal mag-

netic field models depending upon the zero and non-zero Lorentz force (J×B) on

photosphere, i.e., force-free and non force-free approaches are discussed in detail.

To study reconnection the vector magnetic field is required which is obtained using

the non force-free extrapolation technique to initiate the data-based simulations

in Chapter 6. The flare observations and magnetic field data utilized for extrapo-

lations in this thesis are obtained from the Atmospheric Imaging Assembly (AIA)

and Heliseismic Magnetic Imager (HMI) instruments onboard Solar Dynamic Ob-

servatory (SDO).

Chapter 3: Numerical model

In this Chapter, the detailed description of the EULAG MHD—a widely used

computation model is presented. EULAG uses MPDATA advection and Implicit

Large Eddy Simulation (ILES) schemes which are discussed in detail. Utilizing the

ILES property and the flux conservative form of EULAG solver the Hall forcing
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term is incorporated in the model and discussed in detail in this Chapter.

Chapter 4: Benchmarking the 3D EULAG HMHD solver

This Chapter documents the benchmarking results of the 3D EULAG HMHD

solver. As emphasized in the introduction, the focus here is to explore reconnec-

tion dynamics in the Hall MHD with its properties such as faster reconnection and

impulsiveness. Both the properties are verified along with the key highlights of

3D nature of magnetic field line evolution. Additionally, only the whistler wave

modes are investigated. Since the model assumes incompressibility and homoge-

neous plasma density, Hall drift wave modes are not considered. There is a good

agreement between the numerical and analytical whistler wave modes frequency,

detailed in this Chapter. The description of the 3D Hall MHD solver and bench-

mark validation results are published in Bora et al. (2021).

Chapter 5: Investigation of the Hall effect on magnetic reconnection

during the evolution of a magnetic flux rope

In this Chapter, the influence of the Hall forcing on generation and ascend of a

magnetic flux rope generated from bipolar sheared magnetic arcades is discussed

for two cases. The first case uses initially axisymmetric (2.5D) while the second

case uses initially 3D bipolar sheared magnetic arcade configurations for the sim-

ulations. The details of reconnection during the Hall MHD and MHD evolution of

the rope along with the energetics are highlighted. The results of the first case of

this work have been published in Bora et al. (2021). The results of the second case

study are presently under preparation toward communication in a peer-reviewed

journal.

Chapter 6: Comparison of the magnetic reconnection in a flaring solar

active region using data-constrained Hall MHD and MHD simulations

This Chapter contains a comparative study of possible magnetic reconnections

causing the flare brightening in the lower solar atmosphere. The data-constrained
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Hall MHD model is employed to simulate a C1.3 class flare in active region NOAA

12734 as a test bed. The Chapter starts with the description of salient spa-

tiotemporal features observed in the SDO/AIA multi wavelength channel images.

Further, the non force-free-field (non-FFF) extrapolation utilizing the SDO/HMI

vector magnetogram is discussed. A detailed numerical analysis to detect the fa-

vorable topologies for magnetic reconnections is presented. Finally, the differences

in the magnetic reconnection dynamics during the Hall MHD and MHD evolution

are presented. The results of this work have been published in Bora et al. (2022).

Chapter 7: Summary and Future Work

This Chapter presents the summary of the work carried out focusing on the major

findings of the thesis. Further scope for the future work is also discussed.



Chapter 2

Solar Coronal Magnetic Field

Models and Coronal Transient

Observations

2.1 Introduction

The importance of Hall effect in magnetic reconnection has been illustrated in

Chapter 1. The central aim of this thesis is to investigate the Hall effects on

magnetic reconnection in astrophysical plasmas. Toward such an aim, magnetic

reconnections leading to solar coronal transients can be used as testbed. As an

initial exploration, we select a solar flare (more details in Chapter 6) and perform

data-constrained numerical simulations to explore the underlying mechanism of

reconnection. In this regard, solar observations play an important role because:

(a) multiwavelength imaging of the transient activity helps in the understanding

various spatial features and it’s temporal evolution, (b) measurements of magnetic

field allow one to understand the magnetic topology and field line dynamics in

the solar corona. However, most of the ground and space based observatories,

provide the routine measurements of vector magnetic field only on the photo-

sphere. Such extensive and accurate measurements are not available for the solar

corona, leading to the necessity of coronal magnetic field modeling. Such model

based approaches are referred to as extrapolation techniques. In this thesis, the

multi-wavelength observations have been obtained from the Atmospheric Imaging

35
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Assembly (AIA) instrument and the photospheric magnetic field is acquired from

the Helioseismic Magnetic Imager (HMI) instrument, both onboard the Solar Dy-

namics Observatory. In this Chapter, the description of coronal magnetic field

extrapolation models is presented in detail and a brief description of the afore-

mentioned instruments along with the details of their data acquisition techniques

is also provided.

2.2 Coronal magnetic field models

Since, the routine measurements of magnetic field are possible for photosphere

only, the modeling of coronal magnetic field is an essential and indispensable tool

for the understanding of complex magnetic morphologies. Generally speaking,

the successful measurements of magnetic field in the solar atmosphere have been

possible with the technique of spectropolarimetry, which relies on the principle of

Zeeman effect. It is based on the concept that in the presence of high strength

magnetic field, magnetically sensitive spectral lines split into their components.

The splitting is given by ∆λ ∝ λ2gB where λ is the wavelength, g is the Lande’s

g-factor and B is the magnetic field strength. Measuring magnetic field in the

solar corona is challenging because (a) magnetic field strength is very low (∼

10 − 100 G) as compared to the photosphere (∼ 103 G), (b) The million degree

Kelvin temperature in corona (Aschwanden, 2005) results in thermal broadening.

The extrapolation techniques have emerged as feasible and alternate solution to

provide the quantitative information about coronal magnetic field. Such schemes

are broadly classified into force-free and nonforce-free, dependng on whether they

allow a zero or non-zero Lorentz-force (J×B) at the bottom boundary. We present

a detailed description of these models in the following sections.

2.2.1 Force-free models

It is well established that the dynamical evolution of the coronal magnetofluid is

given by the magnetohydrodynamics (MHD) description (see Chapter 1). Then,

for a physical system characterized by length scale L and Alfvén transit time

τA = L/vA (in SI units), where vA =
Bo√
µ0ρ

is the Alfvén speed, the normalized

paulchar
Texte surligné 
Spectropolarimetry, as the name implies, relies on the fact that the Zeeman component have distinct polarisation states. It does not simply use the magnitude of the splitting, which is usually too small to be measured except in sunspot umbrae, but rather polarisation measures in the wings of the Zeeman-broadened spectral lines

paulchar
Texte souligné 



2.2. Coronal magnetic field models 37

force-balance equation along with the other MHD equations can be written as

following:

L

τovo

∂ρ̄

∂t̄
+ ∇̄ · (v̄) = 0 , (2.1)

ρ̄

(
τA
τo

τo
τA

∂v̄

∂t̄
+
vo

2

vA2
v̄ · ∇̄v̄

)
= J̄× B̄− β

2
∇̄p̄− βg

2
ρ̄∇̄ψ̄ , (2.2)

L

τovo

∂B̄

∂t̄
= ∇̄ × (v̄× B̄) , (2.3)

∇̄ · B̄ = 0 , (2.4)

where bars represent the dimensionless quantities. τo and vo are the typical char-

acteristic time scale and flow speed respectively, β = 2µopo/Bo
2 is the plasma-

β parameter which is the ratio of kinetic pressure (po) and magnetic pressure

(Bo
2/2µo), βg = 2µoρoψo/Bo

2 is the ratio of gravitational energy density and mag-

netic pressure where g = ∇ψ, ψ being the gravitational potential. However, if the

characteristic timescale over which the magnetic morphology of a region varies, is

large compared to the Alfvén transit time, then the magnetohydrostatic approxi-

mation can be considered appropriate (Wiegelmann & Sakurai, 2021). In the limit

of sub-Alfvénic flows, Equation 2.2 becomes

0 = J̄× B̄− β

2
∇̄p̄− βg

2
ρ̄∇̄ψ̄ , (2.5)

Therefore, Equation 2.1 and Equation 2.3 now become inconsequential and Equa-

tion 2.5 is known as the magnetohydrostatic equation. Terms in this equation have

varying strengths relative to each other in different layers of the solar atmosphere,

which can be understood using the work of Gary (2001). In his work, a simple

one-dimensional model for magnetically and density stratified solar atmosphere

was constructed. As shown in Figure 2.1, this model constrains the magnetic and

plasma pressures based on the various observations at different heights in the so-

lar atmosphere. Evidently, the magnetic field dominates the plasma dynamics in

the mid-corona (β <1), whereas on the photosphere, the plasma dominates the

dynamics (β >1), except in the active regions. According to Gary (2001)’s plasma

β profile ( Figure 2.1), for the region between 10-100 Mm height in the solar at-
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Figure 2.1: Plasma β variation in the solar atmosphere over an active region from
Gary (2001).

mosphere, β << 1, which indicates that the Lorentz force is large compared to

both plasma pressure gradient as well as gravitational force terms in Equation 2.5.

Consequently, J̄× B̄ = 0, which implies that the force-free approximation is satis-

fied. Force-free assumption leads to two cases: either the current density J is zero

(potential field) or the current density J is parallel to the magnetic field B (linear

and nonlinear force-free fields). The solutions to force-free equations are discussed

as follows.

2.2.1.1 Potential field

The easiest solution to J×B = 0 is the current-free (J = 0) magnetic field which is

also known as the potential field. The current-free magnetic field, i.e., ∇×B = 0,

can be expressed as B = −∇χ where χ is the scalar potential. The solenoidal

condition ∇ · B = 0 leads to the partial differential equation (PDE), ∇2χ = 0—

the Laplace equation. Imposing Neumann boundary condition, i.e., the normal

component of the magnetic field

(
∂χ

∂n
= Bn

)
on the boundary of an enclosed

volume leads to an unique solution of the PDE. It can be readily visualized that
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the magnetic energy, W =

∫
B2

2µo
dV associated with the potential fields is the

smallest. The magnetic energy of the non-potential magnetic fields (J 6= 0) with

the same Bn on the boundary is more than that of the potential fields (Priest,

2014). This holds good for a semi-infinite region, assuming no sources at infinity

so that the magnetic field at the large distances R falls of faster than R−2. A good

example of such system is the solar atmosphere above the photosphere where the

normal field at the photosphere (line-of-sight component) is known, thus potential

field extrapolations require only the line-of-sight magnetic field data.

Figure 2.2: PFSS modeled magnetic field configuration of the Sun. Image courtesy:
http://www.cessi.in/spaceweather/images/big/ori_corona_logo.png

A simplified but popular extrapolation model based on the current-free field ap-

proximation is known as the Potential Field Source Surface (PFSS) model. PFSS

computes the magnetic field in the region bounded between photosphere and an

outer “source surface”, i.e. between R� ≤ r ≤ Rs where R� is the radius of Sun

and Rs is the distance of the source surface from photosphere. The boundary con-

http://www.cessi.in/spaceweather/images/big/ori_corona_logo.png
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ditions are imposed at Rs, and this is the only single free parameter in the PFSS

model. Value of Rs is usually decided in accordance with either the observations

of white-light corona, coronal hole boundaries (in X-ray) or through the extrapo-

lations from in situ interplanetary magnetic field (IMF) observations. Generally

adopted value of Rs is equals to 2.5R� but it can vary with the temporal variation

of magnetic activity (Lee et al., 2011). Although the PFSS models are helpful in

reconstructing the large-scale global structures in the corona but it has two major

limitations: First, the transient phenomena can not be explained using PFSS due

to its current-free nature since it does not account for the twist which plays a

crucial role in coronal transients, and second is that actual coronal magnetic field

is not entirely radial within the radius where electric currents may be ignored.

Figure 2.2 shows an example of the magnetic field configuration obtained using

the PFSS model.

2.2.1.2 Linear force-free

A simplest scenario for the force-free approximation (J×B = 0) follows by consid-

ering non-zero current density. This is possible if current density is taken parallel

to the magnetic field, satisfying the following relation

J = α0B or ∇×B = α0B (2.6)

where α0 is a constant representing twist of magnetic field lines. If, we consider the

curl of Equation 2.6 and use the condition that ∇·B = 0, we obtain the following

vector Helmholtz equation

(∇2 + α2
0)B = 0 (2.7)

The theoretical and mathematical aspects of Equation 2.7 have been explored

in earlier works such as Chandrasekhar & Kendall (1957) and Woltjer (1958).

Further, the solution techniques for the determination of linear force-free field

(LFFF) have been investigated in several previous works such as Nakagawa &

Raadu (1972), followed by Chiu & Hilton (1977) and Seehafer (1978) using Green’s

function approach and by Alissandrakis (1981) employing the method of Fast

Fourier transforms. Generally, linear force-free field extrapolation requires trans-
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verse field components in addition to the line-of-sight magnetogram for unique

solution (Gary, 1989). However, in special cases, using only line-of-sight magne-

togram along with the estimation of α0 provides physically realizable solutions.

One of the methods for estimating α0 utilizes the vector magnetic field data (in

Cartesian coordinate) as

α0(x, y) = µ0
Jz

0

Bz
0 , (2.8)

where

Jz
0 =

∂By
0

∂x
− ∂Bx

0

∂y
(2.9)

Though the linear force-free fields contain more energy than the potential magnetic

field (Sakurai, 1981), their application to active region dynamics is limited. The

reasoning behind this is the spatially varying α0 in observations which contradicts

the assumption of a constant α0 force-free field. Additionally, due to continuous

injection of helicity from photospheric surface, the magnetic field cannot relax to

a linear force-free field (Wiegelmann & Sakurai, 2021). Therefore, the necessity of

nonliear force-free fields cannot be overlooked, which we will now discuss in the

following section.

2.2.1.3 Nonlinear force-free

Having discussed the case of constant α force-free field and it’s limitations, now we

consider the case where α is a function of position vector r, satisfying the equation

∇×B = α(r)B (2.10)

Using solenoidality and taking divergence on both sides of Equation 2.10, we see

that

∇α.B = 0 (2.11)

which suggests that along each particular field line, the value of α is a constant

but can vary among the field lines. Previous works such as Bineau (1972) and

Amari et al. (2006) have explored the mathematical structure of Equation 2.10

regarding uniqueness and existence of solutions. In the past two decades, several

techniques have been developed to obtain a nonlinear force-free field such as the
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upward integration method (Nakagawa, 1974), the Grad-Rubin method (Sakurai,

1981, Amari et al., 1997 and Amari & Aly, 2010) and the optimization approach

(Wheatland et al., 2000 and Wiegelmann, 2004). In general, the problem is chal-

lenging due to intrinsic nonlinearity of the problem and the fact that transverse

components of magnetic field are required on photosphere, which have more er-

ror compared to the line-of-sight field. Further, it should be emphasized that the

photospheric boundary is not force-free, which contradicts Equation 2.10. To deal

with this, particularly within the optimization approach, routines have been devel-

oped which artificially process the bottom boundary to make it compatible with

the force-free assumption (e.g. Wiegelmann et al., 2006a) while ensuring that the

changes are within the limit of measurement errors. Similarly, additional effort

has been directed to deal with regions of lacking observational data in the vec-

tor magnetograms (Wiegelmann & Inhester, 2010). Due to existence of several

methods to obtain nonlinear force-free fields, many studies such as Schrijver et al.

(2006) and De Rosa et al. (2009) have presented a comparative study of models,

highlighting the differences and similarities. The nonlinear force-free model has

been widely accepted as suitable for modeling of active region dynamics. The

success is due to adequate accounting of twisted magnetic field lines and the free

magnetic energy, which is thought to be released during transient phenomenon

such as flares. A comapartively newer and alternate model to nonlinear modeling

is the non force-free model, which we now discuss in the next section.

2.2.2 Non force-free model

As discussed previously, the observed vector magnetograms do not satisfy the

force-free assumption. Therefore, a non force-free model where the Lorentz force

i.e. J×B 6= 0 on the photospheric boundary but decreases with height, becoming

force-free at coronal heights would be an apt choice for modeling of magnetic fields

in the solar atmosphere. The model that we are going to discuss in this section

is based on the principle of Minimum Dissipation Rate (MDR) hypothesis (see

Bhattacharyya & Janaki, 2004 and reference therein for details). The fundamental

idea behind MDR principle is that during an irreversible process, any system

naturally evolves to those states (or relaxed states) in which energy dissipation rate

paulchar
Texte souligné 



2.2. Coronal magnetic field models 43

is minimum. In the context of coronal plasma, one can apply the MDR principle in

the framework of single fluid MHD as well as two fluid formalism. However, the two

fluid formulation is preferred due to the natural flow-field coupling and the inherent

generality over single fluid MHD description. Further, to avoid the loss of relaxed

state in time, we also need to take into account the fact that the solar corona

is an open system and is continuously driven by photospheric motions. Toward

such an aim, in accordance with the selective decay principle (Hasegawa, 1985), by

chosing total dissipation rate (ohmic and viscous) as the minimizer and generalized

helicty dissipation rates (for ion and electron fluid) as invariants, Bhattacharyya

& Janaki (2004) applied the MDR priciple to obtain the corresponding relaxed

state, represented by an inhomogenous double-curl Beltrami equation as

∇× (∇×B) + a∇×B + bB = ∇φ (2.12)

where a and b are constants and φ is a scalar potential. The application of this

idea in solar coronal context was to model coronal arcades as minimum dissipative

relaxed states (Bhattacharyya et al., 2007). Notice that Equation 2.12 can be

recasted into a homogenous equation either by taking curl on both sides, which

gives

∇× [∇× (∇×B)] + a∇× (∇×B) + b∇×B = 0 (2.13)

or be redefining the magnetic field vector as B = B′ +
∇φ
b

, which gives

∇× (∇×B′) + a∇×B′ + bB′ = 0 (2.14)

In principle, Equation 2.13 and Equation 2.14 are equivalent. This can be seen by

looking at the form of solution for Equation 2.13, given by

B =
3∑
i=1

Bi (2.15)

where Bi are the linear force-free Chandrasekhar-Kendall eigenfunctions (Chan-

drasekhar & Kendall, 1957), satisfying the relations

∇×Bi = αiBi (2.16)
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where αi are the constant twists and Bi form a complete set of orthonormal vec-

tors for real eigenvalues (Yoshida & Giga, 1990). Using Equation 2.15 and Equa-

tion 2.16 in Equation 2.13, we have

2∑
i=1

αi
[
α2
i + aαi + b

]
Bi = 0 (2.17)

which suggests that one of the αi = 0, thus corresponding to a potential field.

Since, (∇φ)/b is also a potential field, the equivalency is established. For more

details, see Hu & Dasgupta (2008). Therefore, a superposition of two linear force-

free fields with a potential magnetic field gives the required non force-free solution.

A practical approach toward obtaining such a solution in the case of solar corona

has been outlined in Hu et al. (2010). The stepwise methodology and procedure

is described in detail as follows

Step-1 : Construction of the Vandermonde matrix

Consider Equation 2.15, then by taking additional curl operations, we have the

following set of three equations

B = B1 + B2 + B3 (2.18)

∇×B = α1B1 + α2B2 + α3B3 (2.19)

∇× (∇×B) = α2
1B1 + α2

2B2 + α2
3B3 (2.20)

which can be transformed into a matrix form as follows
B

∇×B

∇× (∇×B)

 =


1 1 1

α1 α2 α3

α2
1 α2

2 α2
3




B1

B2

B3

 = V


B1

B2

B3


where V is said to be the Vandermonde matrix. Now, the constituent fields may
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be expressed as 
B1

B2

B3

 = V−1


B

∇×B

∇× (∇×B)

 (2.21)

Step-2 : Obtain the z component of constitutent fields using the observed line-

of-sight magnetogram

As evident from the term ∇× (∇×B) in the righthand column of Equation 2.21,

double derivatives are required for calculation. In the context of solar corona, this

translates into the requirement of two layers of magnetogram in the solar atmo-

sphere. This criterion is not often met because routine observations of magnetic

field are available only for photosphere and hence only one layer of magnetogram

is possible. In order to get around this problem, Hu et al. (2008) introduced the

following decomposition

B = B1 + B2 + cBpot (2.22)

where B1 and B2 are linear force-free fields, Bpot is a potential magnetic field

obtained using the line-of-sight magnetogram and c is an undetermined multi-

plier. Then, the z components of B1 and B2 can be obtained by taking curl of

Equation 2.22, as follows

(∇×B)z = α1B1,z + α2B2,z

(∇×B)z = α1B1,z + α2(Bz −B1,z − cBpot,z)

B1,z =
1

α1 − α2

[(∇×B)z − α2Bz + α2cBpot,z] (2.23)

B2,z =
1

α2 − α1

[(∇×B)z − α1Bz + α1cBpot,z] (2.24)

Step-3 : Computation of transverse components of constituent fields and mini-

mization of error

Having obtained the z components, we require the transverse fields i.e. the x and

y components for complete specification of the modeled field. For an initial choice
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of α1, α2 and c, Equation 2.24 and Equation 2.24 are solved. Then using a linear

force-free solver, transverse components i.e. B1,x, B1,y and B2,x, B2,y are obtained.

Now, denoting the modeled field as b = B1 + B2 + cBpot, the deviation between

the modeled and observed magnetic field is evaluated by computing En, defined

as

En =
M∑
i=1

(|Bt,i − bt,i| × |Bt,i|) /
M∑
i=1

|Bt,i| (2.25)

By varying the possible values of α1, α2 and c (see Hu & Dasgupta, 2008 for de-

tails), the process of calculating z components, followed by computation of trans-

verse components and En is repeated unti a minimum is obtained in the error. This

state of minimum error corresponds to the optimized pair (α1, α2) and c. Hence,

in principe, the non force-free field in solar atmosphere is obtained. However, fur-

ther improvement was introduced by Hu et al. (2010) as described in the nest step.

Step-4 : Improvements in the modeled field as described by Hu et al. (2010)

Considering the fact that the sum of potential fields is a potential field, Hu et al.

(2010) proposed to modeify the potential field B2 as

B2 = cBpot + B
(1)
2 + B

(2)
2 + ....+ B

(k)
2 + .... (2.26)

where B
(k)
2 are iterative improvements of B2. Note that B

(0)
2 = cBpot. Now, to

calculate B
(k)
2 , first, a difference in transverse components of modeled and observed

field is computed as

4bt = Bt − bt

Then, the z component of B
(k)
2 is computed (Venkatakrishnan & Gary, 1989) as

B
(k)
2,z = F−1

[
ivF(4by) + iuF(4bx)√

(u2 + v2)

]
(2.27)

where F(F−1) denote the Fourier(inverse Fourier) transforms with u and v as fre-

quency domain variables. Having obtained z components, transverse component

of B
(k)
2 can be obtained easily using Fast Fourier Transforms. Now, in an itera-

tive scheme, B2 is improved and En is evaluated until an acceptable minimum is

paulchar
Texte souligné 

paulchar
Texte souligné 

paulchar
Texte surligné 
This implies periodic boundary conditions ; is this a problem ?



2.3. Coronal Transient Observations 47

achieved. The number of iterations can be set manually until the profile of En

saturates and no significant change is observed further.

2.3 Coronal Transient Observations

The coronal magnetic field extrapolation models described in the previous sections

use observations of magnetic field vector at the photoshere as input. Further,

multi-wavelength observatios of the Sun such as in X-ray and EUV wavelength

ranges allow us to study the temporal evolution of a transient activity at various

heights in the solar atmosphere. The simulataneous use of multiwavelength obser-

vations and magnetic field provide a complete data set for effective analysis of any

transient activity. Toward such an aim, we have extensively used the observations

from a space-based satellite, namely the Solar Dynamics Observatory (SDO).

2.3.1 Solar Dynamic Observatory (SDO)

The Solar Dynamics Observatory (SDO; Pesnell et al., 2012a) mission was launched

on 11 February, 2010 and it was the first space based mission comissioned under

the Living With a Star (LWS) program of NASA. The satellite is placed in a

circular geosynchronous orbit, at an approximate altitude of 36,000 km and an

inclination of 28◦. The primary objective of this mission is to investigate the mag-

netic field of Sun, it’s generation, evolution and role in transient activities such as

solar flares and coronal mass ejections. Toward such an aim, it transmits nearly ∼

1.5 Terabytes of data every day to the ground staion, which is later processed into

various data products such as Dopplergrams, magnetograms and spectra. Primar-

ily, it consists of three instruments, namely the Atmospheric Imaging Assembly

(AIA), Extreme Ultraviolet Variability Experiment (EVE) and the Helioseismic

Magnetic Imager (HMI). In this thesis, we have used observations from AIA and

HMI, which we discuss in the following.

2.3.1.1 Atmospheric Imaging Assembly (AIA)

The Atmospheric Imaging Assembly (AIA: Lemen et al., 2012) observes the full-

disk Sun in multiple wavelengths channels. It provides multiple and simultaneous
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Channel Primary ion(s) Region of atmosphere Char. log(T)

4500 Å continuum photosphere 3.7
1700 Å continuum photosphere 3.7
304 Å He II chromosphere, transition region 4.7
1600 Å C IV + continuum transition region, upper photosphere 5.0
171 Å Fe IX quite corona, upper transition region 5.8
193 Å Fe XII, XXIV corona and hot flare plasma 6.2, 7.3
211 Å Fe XIV active-region corona 6.3
335 Å Fe XVI active-region corona 6.4
94 Å Fe XVIII flaring corona 6.8
131 Å Fe VIII, XXI transition region, flaring corona 5.6,7.0

Table 2.1: Different channels of AIA centered on specific lines and correspond-
ing regions of solar atmosphere with different characteristic temperatures (Lemen
et al., 2012)

high-resolution images of the solar corona and transition region up to 0.5 R�

above the solar limb with 0.6′′ pixel−1 spatial resolution and 12-second temporal

resolution. Normal incidence and multi-layer coated optics based telescopes of AIA

allow narrow-band imaging in seven EUV channels, as summarized in Table 2.1.

For each line, it describes the corresponding ion and region of the solar atmosphere,

with characteristic temperature in log scale. In this thesis, we have used the

AIA images to understand the evolution of flaring activity in active region NOAA

12734, to identify salient features of the transient activity at different heights,

and to correlate the observations with data-based MHD and HMHD simulations.

Particularly, we have used the 94 Å to study the evolution of hot plasma in flare

and to identify the location of flare. We have used 171 Å to identify post flare

loops and coronal loops in general. Other channels such as 131 Å and 304 Å have

been used to define a W-shaped brightening (see Chapter 6) in the active rgion,

which describes the overall geometry of the flaring region.

2.3.1.2 The Helioseismic and Magnetic Imager (HMI)

The Helioseismic Magnetic Imager (HMI; Scherrer et al., 2012) instrument onboard

SDO began operations from May, 2010 and since then, it has been observing the

Sun’s entire visible disk continuously. Essentially, it has three components - optics

package, electronic box and a harness to connect the two (for details, see Schou

et al., 2012). Broadly speaking, the HMI data is categorized into three levels
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(a) Level 0 - raw HMI images (b) Level 1 - data from Level 0 at a particular

wavelength and polarization, which has been corrected for various instrumental

effects and (c) Level 1.5 - the HMI observables, computed using Level 1 data

(Couvidat et al., 2016). Further, some higher-level data products such as vector

magnetic field maps (Hoeksema et al., 2014) and active region patches (Bobra

et al., 2014) are also produced. The HMI instrument acquires a series of polarized

filtergrams at fixed cadence, using six wavelengths, centered on the Fe I spectral

line (6173 Å). These observations are accomplished with the help of two cameras,

each of which take full-disk images at roughly 3.75 seconds and have 4096 ×

4096 pixels along the x and y directions. Further, using two different processing

pipelines (a) LoS Pipeline and (b) Vector Pipeline, the filtergrams are utilized to

compute various observables corresponding to the photopsheric surface. The LoS

pipeline uses filtergrams (left or right circular polarization) from the HMI front

camera to compute the Dopplergrams, magnetograms and continuum intensity

at a cadence of 45 seconds in definite and near real time modes. On the other

hand, the Vector Pipeline uses filtergrams (linear and circular polarization) from

the side camera to primarily compute the Stokes-vector elements, supplemented

with line-of-sight Dopplergrams, magnetograms and continuum intensity, all at

cadence of 12 minutes (Couvidat et al., 2016). In this thesis, we have used the

SHARP (Bobra et al., 2014) data series from HMI to obtain the vector magnetic

field corresponding to the photospheric surface for active region NOAA 12734. It

provides the magnetic field in a Cartesian coordinate system, which has been used

as bottom boundary to perform magnetic field extrapolation.

2.4 Summary

In this Chapter, we have discussed the importance of solar observations to un-

derstand transient activities, such as solar flares and coronal mass ejections. The

multi-wavelength imaging data from SDO/AIA and photospheric vector magnetic

field measurements from SDO/HMI have been used to explore the C1.3 class so-

lar flare in active region NOAA 12734, using data-constrained MHD and HMHD

simulations (more details in Chapter 6). In this regard, we have briefly mentioned
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the details and working of the aforementioned instruments, along with the data

acquired from them. We have also emphasized on the fact that since routine obser-

vations of magnetic field are available for photopshere only, extrapolation models

are needed to obtain the magnetic field topology in solar corona. Such models are

broadly categorized into force-free and nonforce-free models depending on whether

they allow a zero or non-zero Lorentz force. Within the category of zero Lorentz

force, three solutions are possible, namely (a) Potential field (b) Linear force-free

field and (c) Non linear force-free field. The three solutions differ with respect to

the force-free parameter (α), zero in Potential field model, constant throughout the

computational domain for LFFF model and variable but constant for each indi-

vidual field line in the NLFFF model. We have also discussed the theoretical and

numerical aspects of the non force-free model, which is based on the Minimum

Dissipation Rate principle. We conclude this chapter with the idea that multi

wavelength observations and magnetic field measurements (for magnetic field ex-

trapolation) are an essential tool for exploration and understanding of transient

activities, which are in turn a consequence of magnetic reconnection.
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Chapter 3

Numerical model

3.1 Introduction

As mentioned in Chapter 1, to fulfill the aim of this as a first step we develop

a 3D HMHD* solver. Therefore, in this Chapter, we document the advancement

of an already well-established MHD model to include Hall effects. A numerical

model consistent with physics of astrophysical plasma must accurately preserve

the flux-freezing by minimizing numerical dissipation and dispersion errors away

from the reconnection regions characterized by steep gradients of the magnetic

field (Bhattacharyya et al., 2010). Such minimization is a signature of a class

of inherently nonlinear transport methods that preserve field extrema along flow

trajectories, while ensuring higher-order accuracy away from steep gradients in ad-

vected fields. As discussed in Section 1.6, the Hall forcing term is only effective and

localized to the regions of steep gradients of magnetic field. Consequently, we in-

corporate the Hall forcing in the established high-resolution EULAG-MHD model

(Smolarkiewicz & Charbonneau, 2013; Charbonneau & Smolarkiewicz, 2013), a

specialized version of the general-purpose hydrodynamic model EULAG predom-

inantly used in atmospheric and climate research (Prusa et al., 2008). Central to

the EULAG is the spatio-temporally second-order-accurate nonoscillatory forward-

in-time (NFT) advection scheme MPDATA, a.k.a Multidimensional Positive Def-

inite Advection Transport Algorithm, (Smolarkiewicz, 2006). MPDATA mimics

the action of explicit subgrid-scale turbulence models. It has proven effectiveness

*Everywhere in this thesis the acronym HMHD is used for model name.
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in generating an intermittent and adaptive residual dissipation whenever the con-

cerned advective field is under-resolved—a property inherent to implicit large eddy

simulations (ILES) (Grinstein et al., 2007). The generation of steep gradients of

magnetic field in absence of magnetic diffusion provides an unbound sharpening

of the corresponding field gradient and inevitably generates under-resolved scales.

The unbound increase in field gradient is then smoothed out by this MPDATA pro-

duced locally effective residual dissipation of the second order, sufficient to sustain

the monotonic nature of the solution. Consequently, the physical reconnections

are mimicked at locations of maximal gradients by ILES property of MPDATA.

The ILES property of MPDATA has proven instrumental in a series of advanced

numerical studies across a range of scales and physical scenarios, including studies

related to the coronal heating along with data-based simulations of solar transients

(Bhattacharyya et al., 2010; Kumar & Bhattacharyya, 2011; Kumar et al., 2015b,

2017; Prasad et al., 2017, 2018; Nayak et al., 2019, 2020). Our development of

a 3D HMHD solver benefits from the ILES property of MPDATA where we have

tied the Hall term with dissipation scale so that the increased local gradients cause

the Hall term to be effective locally.

In this Chapter, we present the important features of advection scheme MP-

DATA in Section 3.2, numerics of EULAG MHD and the advancement to include

Hall forcing term in Section 3.3, and ILES property of MPDATA in Section 3.4.

3.2 Advection solver MPDATA scheme

MPDATA (Smolarkiewicz, 1983, 1984; Smolarkiewicz & Clark, 1986), a finite dif-

ference scheme, was originally designed by P. K. Smolarkiewicz in the early 1980’s.

The algorithm is at least second-order accurate, positive definite, conservative, and

computationally efficient. The iterative use of upstream or upwind schemes allow

for the second order accuracy in MPDATA, where the first iteration is simply a

donor cell differencing. Subsequently, the MPDATA algorithm improves the ac-

curacy of solution by compensating the truncation error, obtained in the second

iteration. In a similar fashion, further iterations may be executed to deal with the

residual errors, resulting from previous iterations, which further enhance the accu-
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racy. In the past decades, MPDATA has been extended to accommodate curvilin-

ear coordinates, full monotonicity preservation, third-order accuracy and variable

sign fields; for details cf. reviews Smolarkiewicz & Margolin (1998); Smolarkiewicz

(2006). Here, by using Cartesian coordinates. we discuss the fundamental concepts

underlying MPDATA design.

3.2.1 Derivation of MPDATA

To fix ideas, we consider a simple one-dimensional advection equation,

∂ϕ

∂t
+
∂(kϕ)

∂x
= 0, (3.1)

for a scalar variable ϕ. The velocity k may also be a function of space and time.

The donor cell discretization of the advection equation is given by,

ϕn+1
i = ϕni −

δt

δx
(ki+ 1

2
ϕnr − ki− 1

2
ϕnl ), (3.2)

where ϕnr and ϕnl are chosen depending on the sign of ki+ 1
2

and ki− 1
2
:

ϕnr =

ϕ
n
i , ki+ 1

2
> 0,

ϕni+1, ki+ 1
2
< 0,

(3.3)

and

ϕnl =

ϕ
n
i−1, ki− 1

2
> 0,

ϕni , ki− 1
2
< 0,

(3.4)

with the integer and half-integer indices correspond to cell centers and cell walls.

In Equation 3.2, ϕn+1
i on the LHS is the solution sought at the grid point (tn+1, xi)

with δt = tn+1 − tn and δx = xi+1 − xi representing temporal and spatial incre-

ments respectively. The above case distinctions can be avoided by writing the

Equation 3.2 in the following form,
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ϕn+1
i = ϕni −

δt

2δx
[ki+ 1

2
(ϕni + ϕni+1)− ki− 1

2
(ϕni−1 + ϕni )

+ | ki+ 1
2
|(ϕni − ϕni+1)− | ki− 1

2
|(ϕni−1 − ϕni )]. (3.5)

Notably, if the sign of k determines the flow direction, this scheme always chooses

the values of ϕ (for a given time) which lies in the upstream direction (Griebel

et al., 1998). The donor cell approximation in flux form is expressed as,

ϕn+1
i = ϕni − [F (ϕni , ϕ

n
i+1, Ui+ 1

2
)− F (ϕni−1, ϕ

n
i , Ui− 1

2
)], (3.6)

where the flux function F is

F (ϕL, ϕR, U) ≡ [U ]+ϕL + [U ]−ϕR, (3.7)

with U ≡ aδt

δx
represents the dimensionless local Courant number while, [U ]+ ≡

0.5(U+ | U |) and [U ]− ≡ 0.5(U− | U |) denoting the nonnegative and nonpositive

parts of the Courant number (Smolarkiewicz & Margolin, 1998; Smolarkiewicz,

2006).

The donor cell scheme is conditionally stable and the corresponding stability

condition, for every time step, has a form

max

(
| ki+ 1

2
| δt

δx

)
≤ 1 ∀i. (3.8)

Moreover, under the condition Equation 3.8, the scheme is also positive definite,

implying: if ϕ0
i ≥ 0 ∀i then ϕni ≥ 0 ∀i and n. These two properties as well

as low computational cost and low phase error make the scheme Equation 3.6

attractive for the numerical evaluation of the advection equation. However, the

scheme being first-order accurate (both in space and time) produces large implicit

numerical diffusion.

Towards quantifying the diffusion in Equation 3.6, for simplicity we assume the

k to be constant and ϕ to be nonnegative. A straightforward truncation analysis,

expanding all dependent variables in a second-order Taylor series about the time

level n and spatial point i, reveals that the scheme more accurately approximates
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the advection-diffusion equation

∂ϕ

∂t
+
∂(kϕ)

∂x
=

∂

∂x

(
K
∂ϕ

∂x

)
, (3.9)

where the diffusion coefficient

K =
δx2

2δt
(| U | −U2). (3.10)

In other words, the scheme estimates the solution of the advection equation with

a second-order truncation error. To enhance the accuracy, it is necessary to con-

struct a numerical estimate of the error and subtract it from Equation 3.6. The

basic strategy, fundamental to all MPDATA schemes, is then to once again utilize

a donor cell approximation to calculate the error term in order to preserve the

properties of donor cell scheme. To do so, the error term, the right hand side term

of Equation 3.9, is rewritten as

e1 ≡ ∂

∂x

(
K
∂ϕ

∂x

)
=
∂(k1ϕ)

∂x
, (3.11)

where e1 symbolizes error term and k1 ≡ K

ϕ

∂ϕ

∂x
is termed as pseudo velocity. The

superscript (1) is used to mark the first iteration for subtracting the error. To

compensate the error, we again use the donor cell scheme but this time with the

pseudo velocity k1 and the ϕn+1 already available from Equation 3.6 in lieu of

the physical velocity k and the ϕn. A first-order accurate estimate of the pseudo

velocity is

k1
i+ 1

2
≡ 2K

δx

ϕ
(1)
i+1 − ϕ

(1)
i

ϕ
(1)
i+1 + ϕ

(1)
i

(3.12)

where ϕ(1) represents the first-order accurate ϕn+1 estimated from Equation 3.6.

The modified Courant number is V 1
i+ 1

2
≡
k1
i+ 1

2

δt

δx
. In the second iteration, we sub-

tract a donor cell estimate of the error to improve the accuracy. The equation of

the second iteration is

ϕ2
i = ϕ1

i − [F (ϕ1
i , ϕ

1
i+1, V

1
i+ 1

2
)− F (ϕ1

i−1, ϕ
1
i , V

1
i− 1

2
)], (3.13)
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which estimates ϕn+1 which is the second-order accurate while preserving the sign

of ϕ. It is an easy matter to show that, like the donor cell scheme, MPDATA is con-

sistent and conditionally stable (Smolarkiewicz, 1983; Smolarkiewicz & Margolin,

1998; Smolarkiewicz, 2006). But, in contrast to the donor scheme, MPDATA does

not contain strong numerical implicit diffusion because of the improved accuracy.

The extension of MPDATA to multiple dimension is straightforward. To demon-

strate, we consider a simple two-dimensional advection equation,

∂ϕ

∂t
+
∂(kϕ)

∂x
+
∂(lϕ)

∂y
= 0, (3.14)

where k and l are velocities in x and y directions. The corresponding donor cell

approximation is then

ϕn+1
i,j = ϕni,j − [F (ϕni,j, ϕ

n
i+1,j, Ui+ 1

2
,j)− F (ϕni−1,j, ϕ

n
i,j, Ui− 1

2
,j)]

−[F (ϕni,j, ϕ
n
i,j+1, Vi,j+ 1

2
)− F (ϕni,j−1, ϕ

n
i,j, Vi,j− 1

2
)], (3.15)

where the flux function is similar to Equation 3.7 and, U ≡ kδt

δx
and V ≡ lδt

δy
are

Courant numbers. Further, the Taylor’s series expansion of Equation 3.15 about

the cell point (i, j) and the time level n with constant velocities yields the following

advection-diffusion equation,

∂ϕ

∂t
+
∂(kϕ)

∂x
+
∂(lϕ)

∂y
= K

∂2ϕ

∂x2
+ L

∂2ϕ

∂y2
− UV δxδy

δt

∂2ϕ

∂x∂y
, (3.16)

with K ≡ δx2

2δt
(| U | −U2) and L ≡ δy2

2δt
(| V | −V 2). To estimate the truncation

error using the donor cell scheme, we rewrite the error terms, the right hand side

terms of Equation 3.16, in the following form

K
∂2ϕ

∂x2
+ L

∂2ϕ

∂y2
− UV δxδy

δt

∂2ϕ

∂x∂y
=

∂

∂x
(k1ϕ) +

∂

∂x
(l1ϕ) (3.17)

where

k1 ≡ K

ϕ

∂ϕ

∂x
− UV δxδy

2δt

1

ϕ

∂ϕ

∂y
and l1 ≡ L

ϕ

∂ϕ

∂y
− UV δxδy

2δt

1

ϕ

∂ϕ

∂x
(3.18)
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are pseudo velocities in x and y directions. Utilizing these velocities and updated

value of ϕn+1 from Equation 3.15, the donor cell scheme is used to estimate the

error. In the second iteration, the error is subtracted to enhance the accuracy.

3.2.2 Extension to generalized transport equation

The general transport equation is

∂ϕ

∂t
+∇ · (kϕ) = R, (3.19)

where R combines all forcing and source terms. In general, both R and velocity

k depend on variable ϕ. The forward-in-time discretization of Equation 3.19 is

assumed as,

ϕn+1 − ϕn

δt
+∇ · (kn+ 1

2ϕn) = Rn+ 1
2 . (3.20)

Expansion of Equation 3.20 into the second-order Taylor series about the time

level n shows that the scheme Equation 3.20 approximates to the equation

∂ϕ

∂t
+∇· (kϕ) = R−∇·

[
0.5δtk(k ·∇ϕ)+0.5δtkϕ(∇·k)

]
+∇· (0.5δtkR)+O(δt2).

(3.21)

In right hand side of Equation 3.21, all O(δt) truncation errors originated by un-

centered time differencing in Equation 3.20 are already expressed by spatial deriva-

tives. Specification of the time levels of both the advective velocity and the forcing

term as n + 1/2 in Equation 3.20 eliminates O(δt) truncation errors which are

proportional to their temporal derivatives (Smolarkiewicz & Clark, 1986). From

Equation 3.21, it is clear that the formulation of second-order accurate forward-

in-time scheme for Equation 3.19 requires the compensation of O(δt) truncation

errors to at least the second-order accuracy.

For such a formulation, we note O(δt) error terms in Equation 3.21 have two

distinct components. The first component is merely due to advection and does

not involve the forcing R. In contrast, the second component depends on the

forcing R. Towards compensating the first component, notable is the reduction
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of Equation 3.19 to homogeneous transport equation for R = 0. Then, MPDATA

scheme retains the form of the basic scheme (Section 3.2.1) where the first donor

cell iteration utilizes the advective velocity kn+ 1
2 and ϕn, and subsequent iterations

use pseudo velocities and ϕ calculated from the preceding iteration; for details

cf. (Smolarkiewicz, 1991; Smolarkiewicz & Margolin, 1993, 1998; Smolarkiewicz,

2006). Compensation of the second component requires subtracting of a first-order

accurate approximation of the error from the right hand side of Equation 3.20. A

simple, efficient, and second-order accurate MPDATA for Equation 3.19 can then

be symbolically written as,

ϕn+1
i = Ai(ϕn + 0.5δtRn,kn+ 1

2 ) + 0.5δtRn+1
i , (3.22)

whereA denotes the basic MPDATA advection scheme (Smolarkiewicz, 1991; Smo-

larkiewicz & Margolin, 1993). In this equation, we assume Rn+ 1
2 = 0.5(Rn+Rn+1)

with Rn+1 representing O(δt2) accurate approximation of R at time level (n+ 1).

Noticeably, first donor cell iteration in the MPDATA scheme uses the auxiliary

variable ϕn + 0.5δtRn in lieu of the physical variable ϕn with a physical advective

velocity kn+ 1
2 . The advection of the auxiliary field is important for preserving

the global accuracy and stability of the forward in time approximations (Smo-

larkiewicz, 1991; Smolarkiewicz & Margolin, 1993, 1997).

The advective velocity at intermediate n + 1
2

time level may be approximated

by linear interpolation or extrapolation

kn+ 1
2 =

1

2
(kn+1 + kn), (3.23)

kn+ 1
2 =

1

2
(3kn − kn−1), (3.24)

either of which is sufficient to maintain second-order accuracy in Equation 3.22.

For the subtleties involved in a particular choice of kn+ 1
2 , readers are refereed to

(Smolarkiewicz & Clark, 1986).
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3.2.3 Nonoscillatory MPDATA

The basic MPDATA scheme discussed above preserves sign� but not monotonic-

ity of the advected variables (Smolarkiewicz, 1983, 1984; Smolarkiewicz & Clark,

1986) and, in general, the solutions are not free of spurious oscillations particularly

in presence of steep gradients (Smolarkiewicz & Grabowski, 1990; Smolarkiewicz,

1991). However, MPDATA is made fully monotone (Smolarkiewicz, 1991) by

adapting the flux-corrected-transport (FCT) methodology (Boris & Book, 1973;

Book et al., 1975; Boris & Book, 1976). Actually, MPDATA is well suited for this

kind of approach for a number of reasons. First, the initial MPDATA iteration

is the donor cell scheme—a low-order monotone scheme which is commonly used

as the reference in the FCT design. Second, assuring monotonicity of subsequent

iterations provides a higher-order accurate reference solution for the next iteration

with the effect of improving the overall accuracy of the resulting FCT scheme.

Third, since all MPDATA iterations have similar low phase errors characteris-

tic of the donor cell scheme (Smolarkiewicz & Clark, 1986), the FCT procedure

mixes solutions with consistent phase errors. This benefits significantly the overall

accuracy of the resulting FCT scheme (Smolarkiewicz & Grabowski, 1990).

3.3 Advancement of EULAG-MHD to include

Hall forcing

The numerical model EULAG is an established model for simulating fluid flows

across a wide range of scales and physical scenarios (Prusa et al., 2008). The

name EULAG alludes to the capability to solve the fluid equations in either an

Eulerian (Smolarkiewicz & Margolin, 1993) or a Lagrangian (Smolarkiewicz &

Pudykiewicz, 1992) mode. The numerics of EULAG are unique, owing to a com-

bination of MPDATA advection schemes, robust elliptic solver, and generalized

coordinate formulation enabling grid adaptivity. The EULAG-MHD is a spin-off

of the numerical model EULAG (Smolarkiewicz & Charbonneau, 2013). Here, we

describe the numerical apparatus of EULAG-MHD utilized for our calculations.

�For historical reasons, we refer to this property as positive-definiteness in the previous sub-
sections.
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3.3.1 Governing equations of EULAG-MHD

MHD equations (in cgs unit�) for an incompressible magnetofluid with zero phys-

ical resistivity (infinite electrical conductivity) are cast in the following form

dv

dt
= −∇φ+

1

4πρ0

B · ∇B + Fν , (3.25)

dB

dt
= B · ∇v, (3.26)

∇ · v = 0, (3.27)

∇ ·B = 0, (3.28)

in a non-rotating Cartesian coordinate. The Lagrangian derivative is related the

Eulerian derivative in the usual manner

d

dt
≡ ∂

∂t
+ (v · ∇). (3.29)

On the right hand side of the momentum transport Equation 3.25, φ is a density

normalized pressure in which thermodynamic pressure is subsumed to magnetic

pressure. Fν symbolizes the viscous drag force. All other symbols have their usual

meaning.

On a general note, EULAG’s governing equations are formulated and solved in

transformed time-dependent generalized curvilinear coordinates

(t̄, x̄) ≡ (t, F (t,x)). (3.30)

The physical domain (t, x), where the physical problem is posed, is assumed to

be any stationary orthogonal coordinate system (i.e., Cartesian, spherical and

cylindrical). Moreover, the transformed horizontal coordinates (x̄, ȳ) are assumed

to be independent of the vertical coordinate z (Prusa & Smolarkiewicz, 2003).

The calculations carried out in this thesis implement the physical domain to be

Cartesian and, therefore both the computational domain and the physical domain

are identical, i.e., (t̄, x̄) ≡ (t, x). Here, we present the details of the EULAG-MHD

for Cartesian domain. The generalized coordinate formulation of EULAG-MHD

�EULAG MHD code uses either cgs or dimensionless units
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utilizes the rigorous tensorial exposition of MHD equations; cf. (Smolarkiewicz &

Charbonneau, 2013).

3.3.2 Numerics

Utilizing Equation 3.27 and Equation 3.28, the momentum transport Equation 3.25

and the induction Equation 3.26 can be rewritten as,

∂Ψ

∂t
+∇ · (vΨ) = R (3.31)

where

Ψ = {v,B}T (3.32)

represents the vector of dependent variables and

R = {Rv,RB}T (3.33)

denotes the right hand side forcing terms in Equation 3.25 and Equation 3.26.

Notably, in Equation 3.31, the Lorentz force term of the momentum transport

equation and the convective term of the induction equation are cast in the conser-

vative forms via relations,

B · ∇B = ∇ ·BB, B · ∇v = ∇ ·Bv. (3.34)

In addition, an ad hoc term −∇φ? is added to right hand side of the induction

equation, in the spirit of the pressure φ in the momentum transport equation, to

ensure ∇ ·B = 0 in numerical integrations.

The Equation 3.31 is integrated using nonoscillatory forward-in-time algorithm

MPDATA. Following Section 3.2.2, an EULAG template algorithm for integration

of the Equation 3.31 can be compactly written as,

Ψn+1
i = Ai(Ψn + 0.5δtRn,vn+ 1

2 ) + 0.5δtRn+1
i ≡ Ψ̂i + 0.5δtRn+1

i , (3.35)
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where Ψn+1
i is the solution sought at the grid point (tn+1, xi).

For an inviscid dynamics (Fν=0), the model template algorithm Equation 3.35

is implicit for all dependent variables in Equation 3.25 and Equation 3.26 because

all forcing terms are assumed to be unknown at time level n + 1. To retain the

proven structure of Equation 3.35 for the MHD system, EULAG-MHD template

can be viewed as

Ψn+1,q
i = Ψ̂i +

δt

2
LΨ |n+1,q

i +
δt

2
N(Ψ) |n+1,q−1

i −δt
2
∇Φ |n+1,q

i , (3.36)

where the right hand side forcing R is decomposed into linear term LΨ with L

denoting a linear operator, non linear-term N(Ψ), and potential term −∇Φ with

Φ ≡ (φ, φ, φ, φ?, φ?, φ?). In Equation 3.36, q = 1, ...,m numbers fixed point iter-

ations. The algorithm Equation 3.36 is still implicit with respect to the forcing

terms LΨ and −∇Φ. Using straight-forward algebraic manipulations, the repre-

sentation Equation 3.36 can be cast into a closed form

Ψn+1,q
i = [I− 0.5δtL]−1

(
ˆ̂
Ψ− 0.5δt∇Φn+1,q

)
i
, (3.37)

where the explicit element is modified to

ˆ̂
Ψ ≡ Ψ̂ + 0.5δtN(Ψ) |n+1,q−1 . (3.38)

The viscous forcing within this algorithm frame work is incorporated by in-

tegrating explicitly to the first-order accuracy in time and then adding to the

the auxiliary argument of MPDATA operator A. Now the argument modifies as

Ψ̃ ≡ Ψn + 0.5δt(Rn + 2R̃) where R̃ symbolizing the first-order time accurate

viscous forcing. All the dependent variables being spatially co-located in Equa-

tion 3.37, the time updated Ψ is obtained by solving two the discrete elliptic

equations for φ and φ∗ generated by the solenoidality constraints (Equation 3.27)

and Equation 3.28 discretized consistently with the divergence operator implied

by A; see (Prusa et al., 2008). Under appropriate boundary conditions, these el-

liptic equations are solved iteratively using a preconditioned generalized conjugate

residual (GCR) algorithm (Eisenstat et al., 1983; Eisenstat, 1983; Smolarkiewicz
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et al., 1997). Because the GCR is an iterative scheme, to distinguish the iterations

appearing in Equation 3.36 and in the GCR solver, the iteration in Equation 3.36

is refereed as “outer”, while the iteration corresponds to GCR is termed as “inner”.

The convergence of the outer iteration is generally controlled by the time step of

the model and monitored by the convergence of the inner iteration in the GCR

solvers (Smolarkiewicz & Szmelter, 2009, 2011). With the completion of the outer

iteration loop, the solution updates and, the total implicit forcing RI = LΨ−∇Φ

in Equation 3.36 is returned as RIni =
2

δt
(Ψn

i −
ˆ̂
Ψi). While, the total explicit forc-

ing RE = N(Ψ) + R̃ is calculated according to its definition using the updated

solution, so REn
i = REi(Ψ

n). The total forcing R = RI + RE is then stored

for the use in the subsequent time step in the auxiliary argument of MPDATA

operator in Equation 3.35.

In the following, we briefly discuss the actual implementation of iterative for-

mulation of Equation 3.35. The iterations progress stepwise such that the most

current update of a dependent variable is used in the ongoing step, wherever pos-

sible. Each outer iteration has two distinct blocks. The first block involves the

integration of the momentum transport equation where the magnetic field enters

the Lorentz force and is taken as supplementary. Being at the half of a single outer

iteration, it is denoted by the index q−1/2. This block ends with the final update

of the velocity via the solution of the elliptic equation for φ. Hence, this block ac-

tually mirrors standard EULAG solution of hydrodynamic equations (Prusa et al.,

2008), leading to the nomenclature “hydrodynamic block”. The second block, re-

ferred as “magnetic block”, uses the current updates of the velocities to integrate

the induction equation. It ends with the final update of the magnetic field via the

solution of the elliptic equation for φ? to clean the divergence of magnetic field.

In the following we summarize sequence of steps fulfilled at each outer iteration

for integrating the MHD equations Equation 3.25-Equation 3.28. For brevity, the

superscripts n are dropped everywhere as by now there should be no ambiguity.

Moreover, at q = 1 the initial guess for v and B is assumed as v0 = 2vn+1 − vn

and B0 = 2Bn+1 −Bn, respectively.

The first step of the hydrodynamic block starts with the estimation of the

magnetic field Bq−1/2 at time tn+1 by inverting the induction equation,
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B
q−1/2
i = B̂i + 0.5δt

[
Bq−1/2 · ∇vq−1 −Bq−1/2tr{∇vq−1}

]
i
. (3.39)

The subsequent step uses this latest magnetic field to obtain velocity following the

standard EULAG procedure,

vqi = v̂i +
0.5δt

ρ0µ0

(∇ ·BB)
q−1/2
i − 0.5δt(∇φ)qi . (3.40)

Plugging this velocity in the discrete form of the Equation 3.27 produces the elliptic

equation for the pressure φ, the solution of which provides the updated solenoidal

velocity v.

The first step of the magnetic block begins with estimation of magnetic field

Bq−1/4 at tn+1 using the update velocity, and the latest magnetic field is evaluated

implicitly in analogy to Equation 3.39:

B
q−1/4
i = B̂i + 0.5δt

[
Bq−1/4 · ∇vq −Bq−1/4tr{∇vq}

]
i
. (3.41)

where the superscript q − 1/4 symbolized as such for being a quarter of iteration

away from the accomplishment. The subsequent step follows in the spirit of the

momentum transport equation, using the conservative form of the forcing terms

in the induction equation:

Bq
i = B̂i + 0.5δt(∇ ·Bq−1/4vq)i − 0.5δt(∇φ?)qi . (3.42)

Implementing the magnetic field in the discrete form of the solenoidality condition

Equation 3.28 produces the elliptic equation for auxiliary pressure term φ?, the

solution of which provides the updated solenoidal magnetic field B.

Induction equation with the Hall term included, can be written in flux con-

servative form. To do so, let us start with the dimensionless generalized Ohm’s

law

E + v×B =
δi
L

J×B , (3.43)

where J = ∇ × B is the dimensionless current density. The term J × B = (∇ ×
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B)×B = −B× (∇×B) can be simplified using the vector identity

−B× (∇×A) = A× (∇×B)−∇(A ·B) + (A · ∇)B + (B · ∇)A ,(3.44)

−B× (∇×B) = B× (∇×B)−∇(B ·B) + (B · ∇)B + (B · ∇)B ,(3.45)

using Equation 3.34, we get

−2B× (∇×B) = −∇(B ·B) + 2∇ · (BB) , (3.46)

−B× (∇×B) = −∇
(
B2

2

)
+∇ · (BB) . (3.47)

Substituting Equation 3.47 in Equation 3.43 and taking curl leads to the induction

equation of following form

∂B

∂t
= ∇× (v×B)− δi

L
∇×∇ ·BB . (3.48)

In EULAG template or flux conservating form, the above equation for an incom-

pressible flow can be written as

∂B

∂t
+∇ · vB = ∇ ·Bv− δi

L
∇×∇ ·BB . (3.49)

Incorporating the Hall forcing into the EULAG-MHD model follows the prin-

ciples of the outlined standard MHD integrator above. Because the Hall term

enters in induction equation as the curl of the Lorentz force, it can be judiciously

updated and combined with the standard induction forcing, whenever the Lorentz

force and/or the magnetic field are updated. In the current implementation it en-

ters the explicit (lagged) counterpart of the induction force, and is updated after

the inversion of the implicit evolutionary form of the induction equation in the

“magnetic” block.

3.4 Implicit Large Eddy Simulation (ILES)

As discussed above, EULAG-MHD is based on MPDATA advection scheme. No-

tably, the higher-order truncation terms of MPDATA provide an implicit turbu-

lence model (Domaradzki et al., 2003; Margolin et al., 2006) and hence, allow to
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conduct large eddy simulations (LESs) without using an explicit subgrid model

(Smolarkiewicz & Prusa, 2002; Domaradzki et al., 2003; Domaradzki & Rad-

hakrishnan, 2005; Rider, 2006; Prusa et al., 2008). In contrast to the standard

LESs which filter out the under-resolved scales by applying explicit subgrid-scale

models, MPDATA filter-outs the under-resolved scales by utilizing the residual

dissipation—intermittent and adaptive to generation of under-resolved scales—

produced via numerics which mimics the action of explicit subgrid scale turbulence

models. In literature, such calculations relying on the properties of nonoscillatory

numerics are referred as implicit large eddy simulations (ILESs). A comprehen-

sive review of ILES with numerous examples are provided in the volume edited by

Grinstein et al. (2007), including applications to local and global solar/stellar con-

vection. In a simulation having fixed grid resolution, under-resolved scales appear

at the reconnection regions. MPDATA then removes these under-resolved scales

by producing locally effective residual dissipation, sufficient to sustain monotonic

nature of the solution. Being intermittent and adaptive, the residual dissipation,

as mentioned above, facilitate the model to perform ILESs. Such ILESs performed

with the model have already been successfully utilized to simulate regu- lar solar

cycles (Ghizaru et al., 2010), with the rotational torsional oscillations subsequently

characterized and analyzed in (Beaudoin et al., 2013). The simulations conducted

with EULAG-MHD continue relying on the effectiveness of ILES in regularizing the

onset of magnetic reconnections, concurrent and collocated with the reconnection

sites (Kumar et al., 2013, 2015a; Kumar & Bhattacharyya, 2016).

3.5 Summary

To summarize, in this Chapter, the important features of EULAG-MHD model

such as MPDATA advection scheme and its dissipative property (ILES nature)

have been discussed in detail. EULAG-MHD is based on (at least) second-order

accurate (both in space and time) non-oscillatory forward in-time advection scheme

MPDATA. MPDATA basically utilizes the donor-cell scheme in iterative manner

to improve the accuracy of the solution while preserving the properties of the

donor cell scheme. The derivation of MPDATA along with its important aspects
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relevant to our calculations has been discussed in detail. Then, the numerics of

the numerical model EULAG-MHD are discussed. The model employs the es-

tablished framework of EULAG with an additional magnetic block to solve the

induction equation. Notably, the proven property of MPDATA to produce locally

adaptive residual dissipations in response to generation of under-resolved scales,

facilitates the numerical model to carry out computations in the spirit of implicit

large eddy simulations. Our development of a 3D HMHD solver by incorporat-

ing the Hall forcing term in the numerical model EULAG-MHD, merits from the

aforementioned property of the model.

The choice of the EULAG-MHD owes to its successful use in the simulation of

solar coronal transients viz. flares and jets whereby the physical reconnections are

mimicked using the residual dissipation of under-resolved scales at the locations

of steep gradients. Away from steep-gradients, the flux-freezing is satisfied to the

high fidelity. Since the Hall effect play a key role only at the locations where the

gradients in magnetic field are strong, therefore the Hall term is incorporated in the

model such that it is tied with the dissipation scale (of the order of spatial stepsize

in the model). Thus, the Hall term is incorporated in the induction equation as an

explicit forcing term which is solved using the standard MHD integrator discussed

in this Chapter. This 3D HMHD solver is benchmarked in the Chapter 4 and

further used to numerically simulate Hall effect on the evolution of magnetic flux

ropes in Chapter 5 and an actual flaring active region in Chapter 6.
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Chapter 4

Benchmarking the 3D HMHD

solver

4.1 Introduction

With the EULAG MHD being extended to include Hall effect in the previous

Chapter, the aim of this Chapter is to benchmark the developed 3D HMHD solver

toward the known properties of Hall-assisted reconnection including the following:

� out-of-reconnection plane magnetic field component generation,

� in-plane current generation,

� sharp changes in the current density rate,

� magnetic energy dissipation unaffected by Hall forcing.

For the purpose, we select the initially unidirectional sinusoidal magnetic field

with the non-zero initial Lorentz force. This initial condition differs from the tra-

ditional initial condition involving the Harris current-sheet or the GEM challenge

(Birn et al., 2001). The developed 3D EULAG HMHD numerical model has been

employed to simulate the evolution of magnetic field lines in the presence and

absence of Hall forcing term (i.e., Hall MHD and MHD, respectively). It solves

the dimensional set of Hall MHD and MHD equations in cgs units, invoked in

Section 4.2. The magnetic reconnections in both the simulations are compared to

investigate the Hall effect. Linear analysis of the Hall MHD equations leads to

69
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the two type of waves namely whistler and Hall drift waves (Huba, 2003). In this

Chapter, we present the whistler wave modes analysis and compare the analytical

frequency to numerical frequency.

4.2 Numerical Model

The two sets of numerical experiments presented in this Chapter use dimensional

and dimensionless set of equations which we describe in this section. The numeri-

cal experiment to benchmark the 3D EULAG HMHD solver solves the dimensional

equations while the wave exploration experiment utilizes the dimensionless equa-

tions. Using a conservative flux-form and dyadic notation, the dimensional Hall

MHD equations are compactly written (in cgs units) as

∂v

∂t
+∇ · vv = −∇φ+

1

4πρ0

∇ ·BB + µ0∇2v , (4.1)

∂B

∂t
+∇ · vB = ∇ ·Bv − d0

4π
(∇×∇ ·BB)−∇φ∗ , (4.2)

∇ · v = 0 , (4.3)

∇ ·B = 0 , (4.4)

where ρ0 and µ0 denote constant density and kinematic viscosity respectively,

φ =
(
p+ B2/8π

)
/ρ0 is the density normalized total pressure, and d0 =

√
4πδi/

√
ρ0;

the −∇φ∗ term on the right-hand-side (rhs) is already explained in Section 3.3.2.

The dimensionless equations

∂v

∂t
+∇ · vv = −∇φ+∇ ·BB +

τA
τν
∇2v , (4.5)

∂B

∂t
+∇ · vB = ∇ ·Bv − δi

L0

(∇×∇ ·BB)−∇φ∗ , (4.6)

∇ · v = 0 , (4.7)

∇ ·B = 0 , (4.8)

are achieved using the following normalizations used in Equation 4.1 - Equation 4.4

B −→ B

B0

, v −→ v

vA
, L −→ L

L0

, t −→ t

τA
, p −→ p

ρvA2
, (4.9)
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The ratio τA/τν is an effective viscosity of the system which, along with the other

forces, influences the magnetofluid evolution. The constant B0 is kept arbitrary,

whereas L0 is fixed to the system size. Further, vA ≡ B0/
√

4πρ0 is the Alfvén

speed, where ρ0 is a constant mass density. The τA and τν are respectively the

Alfvén transit time (τA = L0/vA) and viscous diffusion time scale (τν = L2
0/ν).

The kinematic viscosity is denoted by ν. The equations are numerically integrated

using the 3D HMHD solver and the model assumes the magnetofluid to be ther-

modynamically inactive and incompressible, having zero physical resistivity.

4.3 Results

4.3.1 Benchmarking the 3D HMHD solver

To benchmark the HMHD solver, the initial field is selected as

Bx = 0 , (4.10)

By = 0 , (4.11)

Bz = 2.5 sin(x) , (4.12)

with x, y, z ∈ [−2π, 2π], respectively, in each direction of a 3D Cartesian domain.

This selection has two merits: first, the magnetic field reverses at x=0; and second,

the Lorentz force

(J×B)x = −6.25 cos(x) sin(x) , (4.13)

(J×B)y = 0 , (4.14)

(J×B)z = 0 , (4.15)

generates a converging flow that onsets magnetic reconnections.

Equation 4.1-Equation 4.4 are solved for d0 = 0, 2. The latter selection of d0

optimizes the computation time and a tractable development of magnetic struc-

tures for the employed spatio-temporal resolution. The corresponding δi = 0.56

is slightly higher than the spatial stepsize δx ≈ 0.40 set for the simulation. Con-

sequently, the Hall forcing kicks in near the dissipation scale, thereby directly
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affecting the overall dynamics only in vicinities of the reconnection regions. With

the large scale L = 4π of the magnetic field variability, the resulting δi/L ≈ 0.04 is

of the order of solar coronal value. The simulations are then expected to capture

dynamics of the Hall MHD and the intermittently diffusive regions of corona-like

plasmas, thus shedding light on the evolution of neighboring frozen-in magnetic

field lines. Moreover, 1/S < δi/L as discussed in Introduction. The physical do-

main is resolved with 32 × 32 × 32 grid. A coarse resolution is selected for an

earlier onset of magnetic reconnections and to expedite the overall evolution. The

kinematic viscosity and mass density are set to ν = 0.005 and ρ0 = 1, respectively.

All three boundaries are kept open. The initial magnetic field is given by the

Equation 4.10-Equation 4.12 and the fluid is evolved from an initially static state

having pressure p = 0.

The overall evolution is depicted in different panels of Figure 4.1. The initial

Lorentz force, given by Equation 4.13 - Equation 4.15, pushes segments of the

fluid on either sides of the field reversal layers—toward each other. Consequently,

magnetic energy gets converted into kinetic energy of the plasma flow: panels

(a) and (b). Panels (c) and (d) show history of grid-averaged magnitude of the

the out-of-plane (along y) and in-plane (xz plane) magnetic fields. Notably, for

d0 = 0 (MHD) the out-of-plane field is negligibly small compared to its value

for d0 = 2 (Hall MHD). Such generation of the out-of-plane magnetic field is

inherent to Hall MHD and is in conformity with the result of another simulation

(Ma & Bhattacharjee, 2001). The panels (e) and (f) illustrate the variation of the

rate of change of out-of-plane current density and total volume current density.

Importantly, in contrast to the d0 = 0 curve, the rate of change of volume current

density shows an early bump at (≈ 7.5 s) and a well defined peak (t ≈ 9.75 s) for

d0 = 2. Such peaks in the current density are expected in the impulsive phase of

solar flares, and they manifest magnetic reconnections in the presence of the Hall

term (Bhattacharjee, 2004).

Figure 4.2 plots magnetic field lines tangential to pre-selected planes during dif-

ferent instances of the evolution for d0 = 0. The panel (a) plots the initial magnetic

field lines for referencing. The initial Lorentz force pushes anti-parallel magnetic

field lines (depicted in the inset) toward each other. Subsequently, X-type neutral
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Figure 4.1: Panels (a) and (b) show the evolution of the magnetic energy (black
dashed curve) and kinetic energy (red solid curve) for d0 = 0 (MHD) and d0 = 2
(Hall MHD) respectively. Panel (c) shows the evolution of out-of-plane magnetic
field for d0 = 0 (MHD) with black dashed curve and d0 = 2 (Hall MHD) with red
solid curve respectively. Also in panels (a) to (c), the scales for the solid and the
dashed curves are spaced at right and left respectively. Panels (d) to (f) represent
in-plane magnetic field, amplitudes of the rate of change of out-of-plane and total
current densities for d0 = 0 (black dashed curve) and d0 = 2 (red solid curve)
respectively. The variables in panels (a) and (b) are normalized with the initial
total energies. All the variables are averaged over the computational domain.
Important are the generation of the out-of-plane magnetic field along with sharp
changes in time derivatives of the out-of-plane and total volume current densities
in Hall MHD simulation.

points develop near z = ±2π. The consequent magnetic reconnections generate

a complete magnetic island which maintains its identity for a long time. Such is-

lands, stacked on each other along the y, generate an extended magnetic flux tube

(MFT) at the center, which in its generality is a magnetic flux surface. Further

evolution breaks the MFT such that the cross section of the broken tube yields two

magnetic islands. The point of contact between the two tear-drop shaped magnetic

field lines generates an X-type neutral point. Notably, within the computational

time, no field is generated along the y direction and the corresponding symmetry

is exactly preserved.
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Figure 4.2: Snapshots of preselected magnetic field lines for the d0 = 0 (MHD)
simulation, plotted on equidistant y-constant planes. In all figures (this and here-
after), the red, green and blue arrows represent the x, y and z-axis respectively.
The inset in panel (a) highlights the polarity reversal of the initial magnetic field
lines. The plots illustrate the formation of a primary flux tube (panel (b)) made
by stacking of the depicted magnetic field lines. Notably symmetry is preserved
throughout evolution.

In Figure 4.3 we provide the 2D projection of the magnetic field lines on the

y = 0.5 plane, for later comparison with similar projection for the d0 = 2 case.

The panels (a) to (b) and (c) to (d) of Figure 4.4 show magnetic field lines

evolution for d0 = 2 from two different vantage points.

The field lines are plotted on different y constant planes centered at x = 0.5 and

x = 0.74435. The planes are not connected by any field lines at t = 0. Importantly

out-of-plane magnetic field is generated with time in both sets of field lines (at

x = 0.5 and x = 0.74435), which connects two adjacent planes (cf. panel (b) of

Figure 4.2 and Figure 4.4 and breaks the y symmetry that was preserved in the d0 =

0 case — asymmetry in reconnection planes. Consequently the evolved B is three-

dimensional. Also, the out-of-plane component (By) has a quadrupole structure,

shown in Figure 4.5, which is in congruence with observations and models (Mozer

et al., 2002).
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(a) (b) (c) 

(d) (e) (f) 

t=0 s t=5.76 s t=11.8 s

t=20 s t=28 s t=32 s

z

y

x

Figure 4.3: Projection of magnetic field lines depicted in Figure 4.2 on a y constant
plane during their evolution. Notable is the formation of a primary magnetic island
having a single O-type neutral point. Subsequently, the primary island breaks into
two secondary islands which are separated by an X type neutral point.

For better clarity the magnetic field lines evolution is further detailed in Fig-

ure 4.6 and Figure 4.7. In Figure 4.6 important is the development of two MFTs

constituted by disjointly stacked magnetic islands. The islands are undulated and

appear much earlier compared to the d0 = 0 case, indicating the faster reconnec-

tion. Notable is also the creation of flux ropes where a single helical field line makes

a large number of turns as the out-of-plane field By develops (Figure 4.7). In prin-

ciple, the magnetic field line may ergodically span the MFS, if the “safety factor”

q = rBy/LBT is not a rational number (Freidberg, 1982); here r and L are the ra-

dius and length of the rope, respectively, and BT =
√
B2
x +B2

y . Further evolution

breaks the flux rope into secondary ropes by internal magnetic reconnections—i.e.,

reconnections between magnetic field lines constituting the rope—shown in panels

(a) to (d) of Figure 4.7, where two oppositely directed sections of the given mag-

netic field lines reconnect (location marked by arrows in the Figure 4.7). Since

most of the contemporary Hall simulations are in 2D, in Figure 4.8 we plot the

projection of field lines depicted in Figure 4.4 on y = 0.5 plane. The corresponding

evolution is visibly similar to the generation of secondary islands (Shi et al., 2019),
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(a) (b) 

(c) (d) 

t=4 s t=8 s

t=4 s t=8 s

z

x
y

Figure 4.4: Magnetic field lines evolution for d0 = 2 (Hall MHD) case, from two
vantage points. The field lines are plotted on planes centered at x = 0.5 and
x = 0.74435 and equidistant along y. Important is the symmetry breaking, cf.
field lines at y = −2π and y = 2π of the panel (b) and (d). The out-of-plane
magnetic field is generated throughout the domain.

and their later coalescence as envisioned by Shibata & Tanuma (2001).

4.3.2 Investigation of the whistler wave modes using the

3D HMHD solver

To complete the benchmarking, we repeat the numerical experiment described

in Huba (2003), where wave propagation in the presence of the Hall forcing is

explored. Notably, the EULAG-MHD being incompressible and plasma being

homogeneous, we only concentrate on the whistler wave modes.
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(a) (b) 

(c) (d) 

t=2 s t=4 s

t=6 s t=8 s

z
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x

Figure 4.5: Contour plots of By(x, z) (out-of-plane component) on y-constant
planes for d0 = 2 (Hall MHD), with time. The plots confirm the quadrupolar
nature of the out-of-plane component of the magnetic field.

Let us consider the induction equation in it’s dimensionless form

∂B

∂t
= − δi

L0

∇× (J×B) ,

which can also be written as

∂B

∂t
= − δi

L0

∇× ((∇×B)×B) , (4.16)

Now assuming that the time independent ambient magnetic field is in the z
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(a) (b) 

(c) (d) 

(e) (f) 

t=4.00 s t=4.28 s

t=4.80 s t=5.60 s

t=6.00 s t=6.40 s

Figure 4.6: Panels (a) to (f) show the magnetic field lines evolution for d0 = 2
(Hall MHD) case, from two different angles to highlight the generation of two MFTs
constituted by disjoint field lines. The islands look like “figure 8” structure; Panels
(b) to (d). The side view of the field lines are shown in the insets, highlighting
their undulated geometry. The three black lines in the background represent the
three axes.

direction and the perturbations are along x and y directions, we have

B = δB + Bz

where δB = δBxî + δByĵ and Bz = B0k̂.

and a first order linear analysis yields

∂(δB)

∂t
= − δi

L0

∇× [(∇× δB)×Bz] , (4.17)
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(a) (b) 

(c) (d) 

t=5.208 s t=5.212 s

t=5.236 s t=5.240 s
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y

Figure 4.7: Panels (a) and (b) show the topology of the magnetic field lines for
the d0 = 2 (Hall MHD) evolution, prior and after the internal reconnection of the
dark blue colored field line (marked by the arrow). Panels (c) and (d) depict the
topology of field lines prior and after the internal reconnection of blue and red
color field lines within rope, marked by arrow.

since

∇× δB = −î∂δBy

∂z
+ ĵ

∂δBx

∂z

,

and

(∇× δB)×Bz = ĵB0
∂δBy

∂z
+ îB0

∂δBx

∂z

,

The right hand side of Equation 4.17 can be expressed by taking the curl of

above equation
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(a) (b) (c) 

(d) (e) (f) 

t=2.000 s t=4.728 s t=5.760 s

t=8.800 s t=10.800 s t=11.400 s

x

z

y

Figure 4.8: Magnetic field lines evolution for d0 = 2 (Hall MHD), projected on y
constant plane. Panel (a) depicts development of two primary magnetic islands.
Panels (b) and (c) show their further breakage into secondary islands. Panels (d)
to (f) show generation of an X type neutral point by subsequent merging of the
two islands.

(a) (b)

Figure 4.9: Whistler wave amplitude variation from t=0 (panel (a)) to t=0.0080
(panel (b)) for mode number m=2. The color bar on the left hand side depicts
x component of velocity between -5000 to 5000. Length of the region between
black arrows (in panel (a) and (b)), i.e., twice the distance between two consecu-
tive nodes (white regions marked by horizontal black lines) is the wavelength λN .
Notable is the amplitude variation from successive negative-positive (at t=0) to
positive-negative (at t=0.0080) respectively. The red, green, and blue arrows on
the bottom right of computational domain represent the x, y, and z axes of Carte-
sian coordinate system respectively in this figure and Figure 4.10 and Figure 4.11

∇× [(∇× δB)×Bz] = −îB0
∂2δBy

∂z2
+ ĵB0

∂2δBx

∂z2

Now the Equation 4.17 can be written as
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∂(δB)

∂t
= − δi

L0

(
−îB0

∂2δBy

∂z2
+ ĵB0

∂2δBx

∂z2

)
The magnetic field perturbation is assumed to be a plane wave, with δBx and

δBy ∝ exp(ikzz − iωt), then ∂
∂t
→ iω, ∇z → (−ikz) and ∇z

2 → −kz2.

iω
(
δBxî + δByĵ

)
= − δi

L0

(
îB0kz

2δBy − ĵB0kz
2δBx

)
, (4.18)

ωδBx = i
δi
L0

B0kz
2δBy , (4.19)

ωδBy = −i δi
L0

B0kz
2δBx , (4.20)

ω2 = −i2
(
δi
L0

)2

B0
2kz

4 , (4.21)

(a) (b)

Figure 4.10: Whistler wave amplitude variation from t=0 (panel (a)) to t=0.0054
(panel (b)) for mode number m=3. The color bar on the left hand side depicts x
component of velocity between -8500 to 8500. Length of the region between black
arrows (in panel (a) and (b)), i.e., twice the distance between two consecutive nodes
(white regions marked by horizontal black lines) is the wavelength λN . Notable
is the amplitude variation from successive positive-negative (at t=0) to negative-
positive (at t=0.0054) respectively.

Finally, the dimensionless dispersion relation of whistler wave is obtained as

ω =

(
δi
L0

)
B0kz

2

Following Huba (2003), the ambient field is set up as

Bz = B0 , (4.22)
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whereas the perturbations are

δBx = δB0 sin

(
2πmz

L0

)
, (4.23)

δBy = δB0 cos

(
2πmz

L0

)
, (4.24)

where L0 is the size of system which is set equal in all three directions x, y, and

z of a Cartesian coordinate system and m is the wave mode number. According

to the perturbation expressions Equation 4.24, the total length (Lz) on each plane

in computational domain will satisfy Lz = mλ. The parameters set for simulation

are B0 = 1000, δB0 = 10 and L0 = 7π. The simulations are carried out on a

computational domain of size 128 × 128 × 128 and the dimensionless Hall MHD

equations are employed. The analytical wave propagation number is given by kAz =
2πm

L0

and the numerical wave propagation number is given by kNz =
2π

λN
. λN is the

wavelength—twice the distance between two consecutive nodes—calculated from

the simulation outcomes and shown in the Figure 4.9, Figure 4.10, and Figure 4.11.

(a) (b)

Figure 4.11: Whistler wave amplitude variation from t=0 (panel (a)) to t=0.0040
(panel (b)) for mode number m=4. The color bar on the left hand side depicts x
component of velocity between -11000 to 11000. Length of the region between black
arrows (in panel (a) and (b)), i.e., twice the distance between two consecutive nodes
(white regions marked by horizontal black lines) is the wavelength λN . Notable
is the amplitude variation from successive positive-negative (at t=0) to negative-
positive (at t=0.0040) respectively.

The ratio of analytical to numerical frequencies obtained for few modes are listed

in the Table 4.1, confirming the simulations to replicate the analytical calculations

fairly well.

paulchar
Texte surligné 
Are anaytical calculations also providing amplitude ratios for modes of different m ? Or anything else that could be compared to the simulation results ?



4.4. Summary and Conclusion 83

m Analytical frequency (ωA) Numerical frequency (ωN)
2 26.12 27.50

3 132.237 141.88

4 417.92 430.04

Table 4.1: List of parameters for the wave simulation.

4.4 Summary and Conclusion

In this Chapter, the developed 3D HMHD solver has been benchmarked with an

initially sinusoidal magnetic field, symmetric in the y direction of the employed

Cartesian coordinate system. The choice of the field is based on its simplicity

and non-force-free property to exert Lorentz force on the magnetofluid at t = 0.

Moreover, the selected field provides an opportunity to independently verify the

physics of Hall MHD without repeating the more traditional computations related

to the Harris equilibrium or the GEM challenge. Simulations are carried out in

the absence and presence of the Hall term. In the absence of the Hall term the

magnetic field maintains its symmetry as magnetic reconnections generate mag-

netic flux tubes made by disjoint magnetic field lines. With the Hall term, the

evolution becomes asymmetric and 3D due to the development of magnetic field

which is directed out of the reconnection plane. This is in concurrence with ear-

lier simulations. Along with the flux tube, magnetic reconnections also generate

magnetic flux rope in the Hall MHD. When viewed along the negative y direc-

tion, the rope and the tube appear as magnetic islands. Further evolution, leads

to breakage of the primary islands into secondary islands and later, their coales-

cence. The results, overall, agree with the existing scenarios of Hall-reconnection

based on physical arguments and other recent simulations including those on the

GEM challenge. An important finding is the formation of complex 3D magnetic

structures which can not be apprehended from 2D models or calculations although

their projections agree with the latter. Alongside, we have numerically explored

the Whistler mode propagation vis-a-vis its analytical model and found the two

to be matching reasonably well.

The overall simulation results with the 3D HMHD solver give us the confidence
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to use it to model naturally observed magnetic structures further.
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Chapter 5

Investigations of the Hall effect on

magnetic reconnection during the

evolution of a magnetic flux rope

5.1 Introduction

The results presented in Section 4.3.1 depict the magnetic flux rope (MFR) for-

mation owing to the generation of an out-of-plane (reconnection plane) magnetic

field component—one of the well known feature of the Hall-assisted magnetic re-

connection. MFR is defined as a bundle of helically twisted magnetic field lines

wrapped along a common axis (Zhong et al., 2021). MFR is often regarded the

fundamental structure associated CMEs on the Sun. There are two concepts of

MFR eruption associated to CMEs; one considers the pre-existing MFR in the

solar atmosphere confining the plasma material and the another assumes MFR

formation in consequence of magnetic reconnection from initially highly sheared

magnetic arcades. Models based on observations, such as CSHKP cite, tether cut-

ting cite, and breakout— irrespective of their applicability to explain successful

CME—suggest that magnetic reconnections beneath the MFR essentially shape

the on-the-fly MFR. In brief, the CME models require MFRs to confine plasma.

Destabilized from its equilibrium, as the MFR ascends with height—it stretches

the overlaying magnetic field lines. The ascend of the rope decreases the magnetic

pressure below it which, in turn sucks in more field lines below the rope. These

85
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non-parallel field lines reconnect and the generated outflow further pushes the

MFR up. It is then imperative to study the effects of Hall forcing on such mag-

netic reconnections during evolution of an MFR. For the purpose, in this Chapter,

the developed 3D EULAG solver is employed to simulate the evolution of MFRs in

the presence and absence of the Hall forcing. The aim of this work is to explore the

topological changes owing to Hall effect on magnetic reconnections by investigating

simulated magnetic field lines dynamics and their comparison in the Hall MHD

and MHD. To ascertain the MFR generation, the simulations are initiated with

the initial conditions of Kumar et al. (2016). The work presented in this Chapter

is mainly divided in two case studies where the first one uses an axisymmetric

(2.5D) and the second one uses fully 3D initial bipolar sheared magnetic field con-

figurations. In this Chapter, the efficient and faster reconnections along with the

magnetic topological changes during the Hall MHD simulations are reported. A

comprehensive analysis of reconnection-assisted MFR evolution for the two cases

is presented below.

5.2 Case-I: MFR generated from a 2.5D initial

analytical magnetic field

The simulations are initiated with an axisymmetric (2.5D) magnetic field given in

Kumar et al. (2016)

Bx = kz sin(kxx) exp

(
−kzz
s0

)
, (5.1)

By =
√
k2
x − k2

z sin(kxx) exp

(
−kzz
s0

)
, (5.2)

Bz = s0kx cos(kxx) exp

(
−kzz
s0

)
, (5.3)

with kx = 1.0, kz = 0.9 and s0 = 6.

Dynamical evolution of the above initial field is governed by the Equation 4.1 -

Equation 4.4 given in the Section 4.2 of previous Chapter. The effective viscosity

and mass density are set to τA/τν = 2×10−5 and ρ0 = 1, respectively. Equation 4.1

- Equation 4.4 are numerically integrated using the 3D HMHD solver described in



5.2. Case-I: MFR generated from a 2.5D initial analytical magnetic field 87

Chapter 3.

The magnetic field lines are depicted in panel (a) of Figure 5.1 which are sheared

bipolar loops having a straight Polarity Inversion Line (PIL) and no field-line

twist. For simulations, a physical domain of the extent [{0, 2π}, {0, 2π}, {0, 8π}]

is resolved on the computational domain of size 64× 64× 128, making the spatial

step sizes δx = δy = 0.0997, δz = 0.1979. The temporal step size is δt = 16×10−4.

The initial state is assumed to be motionless and open boundary conditions are

employed. The simulations are carried out for δi/L0 = 0 and δi/L0 = 0.04, having

a simulated physical time of 7000τAδt. The arbitrary B0 can be selected such that

the Alfvén transit time, τA ∈ {1, 10} s makes the simulated time, 11.2 s to 112 s

consistent with the beginning of the impulsive phase of a flare 100 s to 1000 s.

The evolution onsets as the Lorentz force

(J×B)x =

[
−kx(k2

x − k2
z) + kxs0

(
s0k

2
x −

k2
z

s0

)]
× sin2(kxx) exp

(
−2kzz

s0

)
,(5.4)

(J×B)y = 0 , (5.5)

(J×B)z =

[
kz
s0

(k2
x − k2

z)− kz
(
s0k

2
x −

k2
z

s0

)]
× sin(2kxx)

2
exp

(
−2kzz

s0

)
,(5.6)

pushes oppositely directed segments of magnetic field lines toward each other,

generating the neck at t = 3.264, panel (b) of the Figure 5.1—demonstrating the

magnetic field line dynamics for (δi/L0) = 0. The reconnections at the neck gen-

erate the MFR—which we refer as the primary MFR (panel (c) of the Figure 5.1).

Further evolution preserves the primary MFR by not allowing it to go through

any internal reconnections. Notably, the rope loses its initial symmetry along

the y direction by a marginal amount which, we attribute to the open boundary

conditions. Nevertheless, the rope rises uniformly about a slightly inclined axis.

The magnetic field line evolution for δi/L = 0.04 is exhibited in Figure 5.2.

The selected value is on the order of the coronal value quoted in Introduction and

optimizes the computation. The primary MFR develops at t = 4, which is similar

to the instant at which the primary MFR was generated for the δi/L = 0 case.

The overall dynamics leading to the primary MFR also remains similar to the one

without the Hall forcing. The similar dynamics and the near-simultaneity in the

onset of the the primary MFR in both cases indicate the large scale dynamics, i.e.,
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

t=0 t=3.264 t=4 

t=6.304 t=6.464 t=6.992 

t=7.104 t=7.36 t=8 

z

x

y

Figure 5.1: Panel (a) shows the initial bipolar sheared arcade configuration along
with polarity inversion line, Panels (b) and (c) show the formation of magnetic
flux rope. Panels (d) to (i) represent the further evolution of the magnetic flux
rope with a tilted axis (along y) of it for δi/L = 0 (MHD) case.

the dynamics before or away from reconnections, to be insensitive to the particular

Hall forcing.

However, there are conspicuous differences between the MHD and Hall MHD

realizations of the MFR morphology. In the Hall MHD case the primary MFR

undergoes multiple internal reconnections highlighted in Figure 5.3, leading to

magnetic field line morphologies which when projected favorably look like magnetic

islands similar to those found in the sinusoidal simulation. A swirling motion is

also observed; cf. panels (a) to (f) of Figure 5.3 . Noteworthy, swirling motion

during evolution of a prominence eruption has been observed (Pant et al., 2018).
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

t=0 t=3.264 t=4 

t=6.304 t=6.464 t=6.992 

t=7.104 t=7.36 t=8 

z

x
y

Figure 5.2: Panels (a) to (i) show the topology of magnetic field line s in their
evolution for δi/L = 0.04 under the Hall forcing. Important is the similarity of the
dynamics leading to the formation of primary MFR which generates at a similar
instant as the primary MFR in the absence of the Hall forcing.

To complete the analyses, we plot the overall evolution of magnetic and kinetic

energies, amplitude of the out-of-plane field and the rate of change of the total

volume current density in panels (c) and (d) of the Figure 5.4 The similarity of the

energy curves in the presence and absence of the Hall forcing is a reminiscent of the

fact that the Hall term does not affect the system energetics directly. Importantly,

the out-of-plane magnetic field (approximated by the axial magnetic field By)

is larger than that in the absence of the Hall forcing, in accordance with the

expectation. Further, contrary to its smooth variation in the MHD case, the

rate of change of total volume current density in Hall MHD goes through small
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(a) (b) 

(c) (d) 

(e) (f) 

t=6.4 t=6.88 

t=7.312 t=7.392 

t=7.584 t=7.6 

Figure 5.3: Sequence of magnetic field line evolution under the Hall forcing
(δi/L = 0.04 case), zoomed to reveal intricate magnetic topologies generated by
the reconnections. Formation of the “figure 8” kind magnetic structures (panels
(a) to panel (f))—the magnetic islands—can be seen clearly. Importantly, such
intricate topologies are absent in the MFR evolution without the Hall forcing.

but abrupt changes. Such abrupt changes may correspond to a greater degree of

impulsiveness (Bhattacharjee, 2004).

To check the dependence of the above findings on the grid resolution, we have

carried out auxiliary simulations with 32 × 32 × 64 grid resolution, spanning the

same physical domain with all the other parameters kept identical (not shown).

The findings are similar to those at the higher resolution. In particular, they

evince the nearly simultaneous formation of the primary MFR, with and without

the Hall forcing, through the similar dynamical evolution. Also, breakage of the
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Figure 5.4: Panels (a) and (b) show the evolution of normalized (with the ini-
tial total energy) grid averaged magnetic energy (black dashed curve) and kinetic
energy (red solid curve) for δi/L = 0 (MHD) and δi/L = 0.04 (Hall MHD) respec-
tively. Panel (c) shows the evolution of grid averaged out-of-plane magnetic field
for δi/L = 0 (MHD) with black dashed curve and δi/L = 0.04 (Hall MHD) with
red solid curve respectively. Also in Panels (a) to (c), the scales for the solid and
the dashed curves are spaced at right and left respectively. Panel (d) represents
grid averaged rate of change of total current density for δi/L = 0 (black dashed
curve) and δi/L = 0.04 (red solid curve) respectively. Important are the gener-
ation of the out-of-plane magnetic field along with small but abrupt changes in
time derivative of the total volume current density in Hall MHD simulation.

aIn this figure and hereafter in subsequent figures, HMHD acronym is used for Hall MHD.

primary MFR through internal reconnections is found in presence of Hall forcing

whereas no such breakage is seen in the absence of the Hall forcing. The identical

dynamics in two separate resolutions indicate the findings to be independent of

the particular resolution used.
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5.3 Case-II: MFR generated from a 3D initial

analytical magnetic field

The magnetic field lines dynamics responsible for flares and CMEs are 3D owing

to their inherent twist. It is then imperative to complement the above work by

exploring Hall MHD evolution of an initially 3D magnetic configuration toward the

creation and further evolution of MFR. For the purpose, a comprehensive analy-

sis of 3D Hall-assisted magnetic reconnection during the evolution of an anchored

MFR is presented here. Importantly, anchored MFRs are observationally more

relevant to solar coronal transients than the non-anchored levitating ones, as ide-

alized in Bora et al. (2021); Kumar et al. (2016). The simulations are initiated

with a 3D bipolar sheared field (Kumar et al., 2016) B∗ having a sigmoid shaped

polarity inversion line (PIL) (shown in Figure 5.9). The B∗ = B + a0B
′

where B

is given by the Equation 5.1 - Equation 5.3 and B
′

is

Bx
′

= (sinx cos y − cosx sin y) exp

(
−z
s0

)
, (5.7)

By
′

= −(cosx sin y + sinx cos y) exp

(
−z
s0

)
, (5.8)

Bz
′

= 2s0 sinx sin y exp

(
−z
s0

)
. (5.9)

The parameters kx, ky, kz and s0 used in simulations are the same as mentioned

for Case-I in Section 5.2.

Equation 4.1 - Equation 4.4 are numerically integrated using the 3D HMHD

solver (already described in Chapter 3) to get the dynamical evolution of the 3D

initial field given above.

The simulations are conducted by assuming the plasma to be incompressible,

thermodynamically inactive, and explicitly nonresistive. A physical domain of

extent [{0,2π}, {0,2π}, {0,8π}] is resolved by a computational domain of size

64×64×128, making the spatial step sizes ∆x = ∆y =0.0997, and ∆z =0.1979 (in

dimensionless units). The simulations start with a motionless state, i.e. initial flow

velocity field (v) is set to zero. The mass density ρ0 is set to 1 and the effective

viscosity τA/τν is set to 2× 10−5. All the parameters are same for the Hall MHD
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(a) (b)

(c) (d)

Figure 5.5: (a) Initial 3D sheared magnetic field lines (red) along with the oppo-
sitely directed Lorentz force vectors (yellow) around the sigmoid shaped polarity
inversion line ( PIL). (b) The magnitude of Lorentz force (|J × B|) and its top-
down view (inset image in the top left corner). (c) and (d) Two 3D nulls (yellow)
of topological degrees -1 (blue) and +1 (red) during the Hall MHD and MHD
simulations respectively. The spine is indicated by the yellow arrows. The bottom
boundary in all the panels of this figure and subsequent figures shows the Bz maps
in gray scale, where the lighter shade represents positive-polarity regions and the
darker shade indicates the negative-polarity regions. The red, green and blue ar-
rows in each panel represent the x, y and z axis of the Cartesian coordinate system
respectively.

and MHD simulations except δi/L0.

For the MHD simulation the value of δi/L0 is set to 0. In conformity with

the order of δi/L0 in solar corona, it is set to 0.04 for the Hall MHD simulation.

Notably, the ion inertial scales are greater than the dissipation scale (the spatial

step sizes). As a result, reconnections because of both Hall effect and the MPDATA

assisted residual dissipation are expected to be near-simultaneous in the presented

simulations and onset with a steepening of current density.

The simulation results presented herein correspond to a total run of 7000∆t

with the dimensionless temporal step size ∆t = 16 × 10−4. The total simulated

physical time is 7000∆tτA = 11.2τA, where τA is in seconds. For the convenience,

hereafter (including figures) the time is presented in units of τA. The Bz at the
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(a) (b)

(c) (d)

Figure 5.6: Snapshots from the Hall MHD evolution of a 3D MFR. (a) The two
set of field lines (red from left and lavender from right side) approaching each
other (marked in a yellow rectangular box) below the MFR (cyan color) at t =
2.256τA. (b) Structure formed by lavender color magnetic field lines (maked in
yellow rectangle) and the post reconnection arcade formed by red magnetic field
lines at t = 6.448τA. (c) Large-scale MFR formed by lavender color magnetic
field lines and associated small-scale structure around reconnection site (marked
in yellow rectangle) at t = 6.736τA). (d) Post-reconnection wavy arcade generated
by lavender magnetic field lines at t = 7.568τA.

bottom boundary (at z = 0) is kept fixed throughout the simulation while all

other field variables are allowed to vary. At all other boundaries, all variables

including Bz, vary with time with their values at a given spatial location on the

boundary being mapped from the immediate spatial neighborhood. Importantly,

the boundary condition used here is entirely different from the periodic boundary

used in Kumar et al. (2016) and allows for the generated flux rope to be anchored.

Our investigation of the reconnection sites toward the generation of initial MFR

reveals the repetitive 3D reconnections occurring at null points in Hall MHD as

well as MHD simulation. The presence and location of such null points is confirmed

by utilizing the well established and tested trilinear method of null detection in

three-dimensional vector space; see Haynes & Parnell (2007) for details. For the

null detection we have used a python code based on trilinear method, developed
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(a) (b)

(c) (d)

Figure 5.7: Snapshots from the MHD evolution of a 3D MFR. Panel (a) shows
the MFR (cyan color) structure with two other sets of magnetic field lines (red
and lavender) overlying the MFR. Notably, red and lavender color magnetic field
lines are relatively farther compared to the Hall MHD instance of the same at
t = 2.256τA. Panels (b)-(d) highlight the morphology of lavender magnetic field
lines. Noticeably, the lavender magnetic field lines do not exhibit any twisted
structure formation near the reconnection site (cf. panels (b)-(d) of Figure 5.6.)

by Federica Chiti, David Pontin, Roger Scott and available at https://zenodo.

org/record/4308622#.YByPRS2w0wc.

Null detection shows that there are no null points present initially at t = 0. The

reconnections onset as the initial non-zero Lorentz force (direction and magnitude

around the PIL is shown in the panels (a) and (b) of Figure 5.5) pushes the

oppositely directed segments of magnetic field lines toward each other to generate

the neck (panels (c) and (d) of Figure 5.5). At the neck the null points are detected

and one such instance of the reconnections at null points from each simulation (at

t = 1.712τA) is presented in the panels (c) and (d) of Figure 5.5. Since there are

no null points present at t = 0, the net topological degree is zero. Subsequently,

careful analysis of the magnetic field vectors around null points reveals the blue

magnetic field lines have topological degree -1 (magnetic field lines approaching

the null along spine) while the red magnetic field lines have topological degree +1

https://zenodo.org/record/4308622#.YByPRS2w0wc
https://zenodo.org/record/4308622#.YByPRS2w0wc
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(magnetic field lines receding from the null along spine); see Figure 5.5 (c) and

(d). Hence the net topological degree is zero, implying the topological degree to

be conserved (Wyper & Pontin, 2014) because the net topological degree is zero

initially. Determining topological degree of all the nulls detected with trilinear

method is difficult and beyond the scope of this work, since the maximum number

of null points detected in Hall MHD is ≈ 650 and in MHD it is ≈ 500.

(a) t=2.256τA (b) t=6.448τA

(c) t=6.736τA (d) t=7.568τA

Figure 5.8: Detailed and zoomed view of the snapshots of magnetic structures
marked in (a)-(d) of Figure 5.6. (a) Side view of the red and lavender magnetic
field lines with the inset image showing the presence of a 3D null point and the
associated twisted magnetic field lines left to the 3D null magnetic field lines mor-
phology at t = 2.256τA. magnetic field lines in inset image are the red magnetic
field lines color coded with the twist (α = J ·B/|B|2). (b)-(d) depict the instances
from the Hall MHD evolution of lavender magnetic field lines. (b) Zoomed frontal
view of the lavender magnetic field lines structure (marked in Figure 5.6(b)) high-
lighting the presence of a 3D null at t = 6.448τA. Additional field lines (left to
3D null and color coded with α) show the twist value ≈ −5 around the 3D null.
(c) Frontal view of the lavender magnetic field lines structure (color coded with
twist) along with the 3D null at t = 6.736τA. Notably, the magnetic field lines
have twist α ≈ −10 on right and α ≈ (5 − 7.5) on left to the 3D null. (d) Post-
reconnection wavy arcade generated by lavender magnetic field lines (color coded
with α) depicts the twist α ≈ −5 at t = 7.568τA.

Noticeably, the initial magnetic field configuration is symmetric about x =

π (Figure 5(a)), i.e., in the x =∈ {0, π} and x ∈ {π, 2π} domain. Dynamical
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evolution and structures are same about x = π; as evident from the panels (c) and

(d) of Figure 5.5. Therefore, for relevant illustrations and to avoid much dynamical

complications, we focus only in the x ∈ {π, 2π} domain here.

Figure 5.6 and Figure 5.7 illustrate the instances of the evolution of selected

magnetic field lines sets from the Hall MHD and MHD simulation respectively.

To highlight the differences in the magnetic field lines dynamics around the re-

connection sites and subsequent large scale structural changes, we compare panels

(a)-(d) of Figure 5.6 and Figure 5.7. Panels (a) of Figure 5.6 and Figure 5.7 de-

pict an identical twisted MFR (cyan color), overlying stretched field lines and the

reconnection site below MFR during the Hall MHD and MHD simulations. An

indistinguishable initial MFR creation in both the simulations is evident from pan-

els (c) and (d) of Figure 5.5. However, the red and lavender magnetic field lines

approach each other apparently during the Hall MHD (marked by yellow rectangle

in Figure 5.5(a)) at t = 2.256τA but during the MHD the two magnetic field lines

set are farther and red magnetic field lines reconnects with itself below the MFR.

Panels (b) of Figure 5.6 and Figure 5.7 show the similarity of cyan color MFR and

red magnetic field lines post reconnection arcade during the Hall MHD and MHD

simulations respectively. It is only the lavender magnetic field lines which exhibit

different structures during the Hall MHD and MHD from t = 6.448τA onwards,

hence we focus mainly on the instances of lavender magnetic field lines dynamics

in panels (c) and (d) of Figure 5.6 and Figure 5.7 further. Panels (c) of Figure 5.6

and Figure 5.7 depict the main difference in the lavender magnetic field lines struc-

ture, since during the Hall MHD at t = 6.736τA the lavender magnetic field lines

has formed a large-scale MFR (marked by yellow arrow in Figure 5.6(c)) with

the associated twisted magnetic field lines region below MFR (marked by yellow

rectangle in Figure 5.6(c)). Contrary to the Hall MHD, Figure 5.7(c) depicts no

large scale MFR formation by lavender magnetic field lines. Notably, panels (d) of

Figure 5.6 and Figure 5.7 show the post-reconnection arcade (Lavender magnetic

field lines marked with yellow arrow) in the Hall MHD simulation develops earlier

than in the MHD simulation which, yet lacks the arcades to get developed by

t = 7.568τA. A faster development of a post-reconnection arcade clearly indicates

faster reconnection dynamics in Hall MHD.
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Figure 5.9: Panels (a) and (b) show the temporal variation of the volume averaged
magnetic (black dashed curve) and kinetic energies (blue solid curve) during the
MHD and Hall MHD evolution respectively.

All the differences mentioned above are purely on the basis of magnetic field

lines dynamics and structural changes around possible reconnection sites, which

we further analyze using the trilinear method of null points detection and twist

analysis. In Figure 5.8, we present the detailed zoomed view of the magnetic field

lines morphology marked in the Figure 5.6. Panel (a) shows the red and lavender

magnetic field lines sets, depicting the red magnetic field lines to be twisted. Inset

image in panel (a) shows the frontal view of red magnetic field lines (color coded

with the twist α = J · B/|B|2) around the null point (yellow point marked by

arrow) with coordinates x =45.7114, y =30.4794, and z =9.0157. Notably, the

field lines are twisted on the left to null point with the twist value α ≈ 10. Since

the red magnetic field lines forms the post-reconnection arcade by t = 6.448τA and

does not reconnect further, so we drop it and focus on the dynamics of lavender
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magnetic field lines in panels (b)-(d) of Figure 5.8. In panel (b), we present the

zoomed frontal view of lavender magnetic field lines and mark the presence of

detected null point at x =53.2595, y =32.5542, and z =14.0096 location within

it. Additional field lines are shown around the null point which depict the twist

α ≈ −5 near the null point. Panel (c) highlights the front view of magnetic field

lines (marked in rectangular box in Figure 5.6(c)). magnetic field lines are color

coded with the twist values. A null point was detected at x =51.3722, y =32.0806,

and z =13.5316 location using the trilinear method and marked by the yellow

arrow in the figure. magnetic field lines show a high twist value α ≈ −10 right

to the null point. The lavender color large-scale MFR (Figure 5.6(c)) is formed

as a result of reconnections in the region shown in Figure 5.8(c). Finally, panel

(d) shows the same post-reconnection wavy arcade marked in Figure 5.6(d) along

with the twist value α ≈ −5. Notably, the post-reconnection arcade is twisted.

Interestingly, if the twisted magnetic field lines confine plasma, they are usually

observed as filament (against solar disk) or prominence (against solar limb) on the

Sun.

Temporal variation of the volume averaged magnetic and kinetic energies is

presented in the panels (a) and (b) of Figure 5.9. The solid blue and dashed

black curves represent the kinetic and magnetic energy variations respectively.

Noticeably, the magnetic energy is decreasing identically in both the simulations,

hence the results are in agreement with the general theoretical expectation that

the Hall effect do not cause changes in the magnetic energy dissipation rates (Liu

et al., 2022).

In summary, ubiquitous twisting of magnetic field lines in the vicinity of null

points is unique to the Hall MHD evolution of the 3D MFR. Owing to the lo-

cal enhancements of the strong gradients of magnetic field, the Hall effects cause

magnetic field lines morphological changes, (e.g., twisting) around the reconnec-

tion sites which further affects the large-scale dynamics during the Hall MHD

simulations.
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5.4 Summary

In this Chapter, for the first time, the newly developed 3D HMHD EULAG model

has been employed to investigate the Hall effect on magnetic reconnections during

the evolution of MFR. Particularly, the topological changes during the MFR cre-

ation and evolution are analyzed in the presence and absence of Hall term in the

induction equation. Following the model equations, simulations presented in this

Chapter use dimensionless set of equations along with the description of normal-

ization. A detailed analysis of the magnetic reconnections for the MFRs generated

from two sets of initial conditions is carried out. The results presented in this

Chapter, clearly depict that the initial MFR formation mechanism through recon-

nections is identical in the Hall MHD as well as MHD, but the further evolution in

two simulations is illustrious in terms of repetitive formation of intermediate struc-

tures during the Hall MHD evolution. Key highlights of the work presented in this

Chapter include the faster, efficient and complex reconnections during the Hall

MHD simulation and identical volume averaged temporal evolution of magnetic

and kinetic energies in the Hall MHD and MHD simulations. The reconnections

in our simulations occur owing to the numerical dissipation of the under-resolved

magnetic field variables (ILES property of the model, described in Chapter 3).

These reconnections being intermittent and local, successfully mimic the physical

reconnections. Since the dissipation and Hall scales are tied together in the model.

As the current density or magnetic field gradients enhance at the dissipation scale

it introduces additional slippage of field lines in Hall MHD (Bora et al., 2022) over

MHD (due to the Hall term) and, may be responsible for more efficient and faster

reconnections found in the Hall simulations reported in this Chapter.

At last, we want to emphasize on the fact that we have only considered the Hall

effect on magnetic reconnections during the evolution of MFR generated through

the reconnections from an initially bipolar sheared magnetic arcades. Whereas,

presently, there are two different concepts of CMEs on the Sun; one considers

that the MFR is absent prior to eruption and it is eventually generated through

magnetic reconnections (tether cutting or breakout models); another assumes the

pre-existence of MFR emerged from below the photosphere (i.e., from the con-

vection zone) undergoes the ideal MHD instabilities (torus and kink instabilities)
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which initiate eruptions. Available observations of the CMEs on Sun suggest the

possibility of both the ideas. Regardless of which idea is admissible in the real

eruptions on Sun, general agreement is that the reconnection shapes the erupting

dynamic MFR. In order to understand the CMEs happening due to the successful

prominence or filament eruption, is then crucial to also investigate the role of Hall

forcing on magnetic reconnetctions driving the dynamics of a pre-existing 3D MFR

further.





Chapter 6

Data-based Hall MHD and MHD

simulations of a flaring solar

active region

6.1 Introduction

In Section 1.6, a straightforward calculation based on observed impulsive rise time

of hard X-ray emission (≈ few minutes) during the solar flares, suggests that re-

connection length scale is of the order of few tens of meters in the solar corona. An

order-of-magnitude analysis of the induction equation at reconnection scale length

indicates the inevitability of Hall effects during dissipative processes or magnetic

reconnection on the Sun (Bhattacharjee, 2004; Bora et al., 2021). Chapter 5 clearly

illustrates that contrary to the standard MHD, presence of the Hall term leads to

faster reconnection while also capturing the effects of small-scale processes over

large length scale magnetic field line dynamics. Modeling magnetic reconnection

in solar corona at small length scales and capturing its effects on large scale dy-

namics together is challenging and is an open problem. It is compelling to study

the Hall MHD evolution in a more realistic scenario with the initial magnetic field

obtained from a solar magnetogram. In this Chapter, we present the data-based

Hall MHD and MHD simulations of a flaring solar active region as a test bed. The

main objective of this work is to explore significance of the Hall effect on magnetic

reconnection to understand the spatiotemporal development of the observed solar

103
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flare ribbon brightening. To attain the objective, we select the recently reported

active region (AR) NOAA 12734 by Joshi et al. (2021) that produced a C1.3

class flare. In absence of reliable direct measurement of the coronal vector mag-

netic field, several extrapolation models such as nonlinear force-free field (NLFFF)

(Wiegelmann, 2008; Wiegelmann & Sakurai, 2012) and non-force-free field (non-

FFF) (Hu & Dasgupta, 2008; Hu et al., 2010) have been developed to construct

the coronal magnetic field using photospheric magnetograms. The standard is

the NLFFF, and the recent data-based MHD simulations initialized with it have

been reasonably successful in simulating the dynamics of various coronal transients

(Jiang et al., 2013; Amari et al., 2014; Inoue et al., 2014; Savcheva et al., 2016).

However, the NLFFF extrapolations require to treat the photosphere as force-free,

while it is actually not so (Gary, 2001). Hence, a “preprocessing technique” is

usually employed to minimize the Lorentz force on the photosphere in order to pro-

vide a boundary condition suitable for NLFFF extrapolations (Wiegelmann et al.,

2006b; Jiang & Feng, 2014) and thereby artificially modifying the photosphere.

Recently, the non-Force Free Field (non-FFF) model, based on the principle of

minimum energy dissipation rate (Bhattacharyya & Janaki, 2004; Bhattacharyya

et al., 2007), has emerged as a plausible alternative to the force-free models (Hu &

Dasgupta, 2008; Hu et al., 2008, 2010). In the non-FFF model, the magnetic field

B satisfies the double-curl-Beltrami equation (Mahajan & Yoshida, 1998) and the

corresponding Lorentz force on the photosphere is non-zero while it decreases to

small values at the coronal heights (Prasad et al., 2018; Nayak et al., 2019; Prasad

et al., 2020)—concurring with the observations. In this Chapter, we use non-FFF

extrapolation (Hu et al., 2010) to obtain the magnetic field in corona using the

photospheric vector magnetogram obtained from the Helioseismic Magnetic Im-

ager (HMI) (Schou et al., 2012) onboard the Solar Dynamics Observatory (SDO)

(Pesnell et al., 2012b).

The Chapter is organized as follows. Section 6.2 describes the flaring event

in AR NOAA 12734, Section 6.3 presents magnetic field lines morphology of AR

NOAA 12734 along with the preferable sites for magnetic reconnections such as

QSLs, 3D null point, and null-line found from the non-FFF extrapolation. Sec-

tion 6.4 focuses on the numerical model, numerical set-up and the evolution of
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magnetic field lines obtained from the extrapolation along with their realizations

in observations. Section 6.5 highlights the key findings.

6.2 Salient features of the observed C1.3 class

flare in AR NOAA 12734

The AR NOAA 12734 produced an extended C1.3 class flare on March 08, 2019

(Joshi et al., 2021). The impulsive phase of the flare started at 03:07 UT as

reported in the Figure 3 of Joshi et al. (2021) and also shown in the Figure 6.1,

which shows the X-ray flux in the 1-8 Å and 0.5-4 Å detected by the Geostationary

Operational Environmental Satellite (GOES) (Garcia, 1994). The flux evinces two

subsequent peaks after the onset of the flare, one around 03:19 UT and another

roughly around 03:38 UT. Joshi et al. (2021) suggested the eruptive event to take

place in a coronal sigmoid with two distinct stages of energy release.

Additional observations using the multi-wavelength channels of Atmospheric

Imaging Assembly (AIA) (Lemen et al., 2012) onboard SDO are listed below to

highlight important features pertaining to simulations reported in this Chapter.

Figure 6.2 illustrates a spatio-temporal observational overview of the event. Panel

(a) shows the remote semicircular brightening (C1) prior to the impulsive phase

of the flare (indicated by the yellow arrow). Panels (b) to (d) indicate the flare

by yellow arrow and the eruption by the white arrow in the 94 Å, 171 Å, and 131

Å channels respectively. Notably, the W-shaped brightening appears in panels (b)

to (d) along with the flare in different wavelength channels of SDO/AIA. Panel

(e) shows the circular structure of the chromospheric material (C2) during the

impulsive phase of the flare. It also highlights the developed W-shaped flare ribbon

(enclosed by the white box) which has a tip at the center (marked by the white

arrow). Panel (f) depicts the post-flare loops in 171 Å channel, indicating the

post-flare magnetic field line connectivity between various negative and positive

polarities on the photosphere.
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Figure 6.1: GOES light curves showing the evolution of an extended C-class flaring
activity in active region NOAA 12734. The red and green lines indicate X-ray flux
in 1-8 Å and 0.5-4 Å wavelength bands which correspond to disk-integrated X-ray
emission in 1.5-12.5 keV and 3-25 keV energy range, respectively. GOES profiles
reveal two distinct episodes of energy release (marked as S1 and S2) that peak at
03:19 and 03:38 UT, respectively, implying two-step process of energy release.

6.3 Coronal magnetic field construction and the

morphology of AR NOAA 12734

As stated in Chapter 2, the non-FFF extrapolation technique proposed by Hu &

Dasgupta (2008) and based on the minimum dissipation rate theory (MDR) (Bhat-

tacharyya & Janaki, 2004; Bhattacharyya et al., 2007) is used to obtain the coronal

magnetic field for the AR NOAA 12734. The vector magnetogram is selected for

2019 March 08, at 03:00 UT (≈ 7 minutes prior to the start of flare). The original

magnetogram cut out of dimensions 342×195 pixels with pixel resolution 0.5 arcsec

per pixel having an extent of 124 Mm× 71 Mm from “hmi.sharp cea 720s” series

is considered, which ensures an approximate magnetic flux balance at the bottom

boundary. To optimize the computational cost with the available resources, the

original field is re-scaled and non-FFF extrapolated over a volume of 256×128×128

pixels while keeping the physical extent same and preserving all magnetic struc-
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(a)

SDO/AIA  94Å

03:08:59 UT

C1

(b)

SDO/AIA  94Å

03:11:11 UT

Flare

(c)

SDO/AIA  171Å

03:11:45 UT
Flare

Eruption

(d)

SDO/AIA  131Å

03:11:54 UT

Eruption

(e)

SDO/AIA  304Å

03:25:41 UT

C2

(f)

SDO/AIA  171Å

04:10:21 UT

Post−flare loops

Figure 6.2: Panels (a)-(f) are SDO/AIA images showing the multi-wavelength
observations of the flaring active region AR NOAA 12734. Panel (a) shows the
quasi circular brightening at the western part of AR prior to the flare (marked by
C1). Panels (b)-(d) show the initiation of the flare followed by eruption (indicated
by yellow arrow). Panel (e) shows the circular structure after eruption at the
eastern part of AR (marked by C2) and the W-shaped flare ribbon (enclosed by
white box). Panel (f) shows the post-flare loops.

tures throughout the region. The reduction, in effect, changes the conversion factor

of 1 pixel to ≈ 0.484 Mm along x and ≈ 0.554 Mm along y and z directions of the

employed Cartesian coordinate system.

Panel (a) of Figure 6.3 shows En in the transverse field, defined in Section 2.2.2,

as a function of number of iterations. It shows that En tends to saturate at the

value of ≈0.22. Panel (b) of Figure 6.3 shows logarithmic decay of the normal-

ized horizontally averaged magnetic field, current density, and Lorentz force with

height. It is clear that the Lorentz force is appreciable on the photosphere but de-

cays off rapidly with height, agreeing with the general perception that the corona

is force-free while the photosphere is not (Liu et al., 2020; Sarp Yalim et al., 2020).

Panel (c) shows that the Pearson-r correlation between the extrapolated and ob-

served transverse fields is ≈0.96, implying strong correlation. The direct volume

rendering of the Lorentz force in panel (d) also reveals a sharp decay of the Lorentz

force with height, expanding on the result of panel (b).

To facilitate description, Figure 6.4 (a) shows the SDO/AIA 304 Å image at

03:25 UT, where the flare ribbon brightening has been divided into four segments

marked as B1-B4. Figure 6.4 (b) shows the initial global magnetic field line mor-
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Figure 6.3: Panel (a) shows the variation of the deviation En with number of
iterations in non-FFF extrapolation. Panel (b) shows the logarithmic variation of
horizontally averaged magnetic field (Y=B), the current density (Y=J), and the
Lorentz force (Y=L) with height z in pixels. All the quantities plotted in panel
(b) are normalized with their respective maximum values. Panel (c) shows the
scatter plot of the correlation between the observed and extrapolated magnetic
field. The red line is the expected profile for perfect correlation. Distribution of
the magnitude of the Lorentz-force for initial extrapolated field is shown in panel
(d) using direct volume rendering (DVR). The distribution clearly shows that the
Lorentz-force is maximum at bottom boundary and decreasing with the height in
computational volume. The red, green and blue arrows on the bottom left corner
represent x, y and z directions respectively here and hereafter. The color bars on
the right side of the panel represent the magnitude of the strength of Lorentz-force
.

phology of AR NOAA 12734, partitioned into four regions R1-R4, corresponding

to the flare ribbon brightening segments B1-B4. The bottom boundary of panel

(b) comprises of Bz maps in grey scale where the lighter shade indicates positive

polarity regions and the darker shade marks the negative polarity regions. The

magnetic field lines topologies and structures belonging to a specific region and

contributing to the flare are documented below.

Region R1: The top-down view of the global magnetic field line morphology is
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shown in the panel (a) of Figure 6.5. To help locate QSLs, the bottom boundary

(a)

SDO/AIA  304Å

(b)

Figure 6.4: Panel (a) shows the SDO/AIA 304Å image where the flare ribbon
brightening has been divided into four parts B1, B2, B3, and B4 (enclosed by
boxes). Panel (b) shows an overall extrapolated magnetic field lines morphol-
ogy of AR NOAA 12734 with the Bz−component of magnetogram at the bottom
boundary. Foot points of the magnetic structures contained in regions R1, R2, R3,
and R4 correspond to the brightening B1, B2, B3, and B4 respectively.

is overlaid with the logQ map of the squashing factor Q (Liu et al., 2012) in all

panels of the figure. Distribution of high Q values along with Bz on the bottom

boundary helps in identifying differently connected regions. The region with a

large Q is prone to the onset of slipping magnetic reconnections (Démoulin, 2006).
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(a) (b)

(c) (d)

Figure 6.5: Panel (a) shows magnetic field lines morphology of region R1 between
positive and negative polarities P1, P2, N1, N2, and N3 respectively. Panel (b)
highlights the structure of QSL 1 comprised of magnetic field lines Set I (green) and
Set II (maroon). Panel (c) shows the zoomed top view of the flux rope structure
(black) and an overlying QSL 2 (multi color arrowed magnetic field lines), between
the positive and negative polarities P1, P2, and N1 respectively. Panel (d ) shows
the side view of the flux rope where three vertical planes along the cross section
of the flux rope show the twist value Tw at different locations along the flux rope.
In all the panels the log Q between 5 and 10, is overlaid on Bz−component of
magnetogram at the bottom boundary.

Foot points of magnetic field lines constituting QSL1 and QSL2 trace along the

high Q values near the bottom boundary. QSL1, involving the magnetic field lines

Set I (green) and Set II (maroon), is shown in panel (b). Particularly, magnetic

field lines Set I (green) extends higher in the corona forming the largest loops in

R1. Panel (c) illustrates a closer view of QSL2 (multicolored) and the flux rope

(black) beneath, situated between the positive and negative polarities P1, P2 and

N1, respectively. In panel (d), the flux rope (constituted by the twisted black

magnetic field lines) is depicted using the side view. The twist value Tw (Liu

et al., 2012) in the three vertical planes along the cross section of the flux rope is

also overlaid. Notably, the twist value is 2 at the center of the rope and decreases

outward (cf. vertical plane in middle of the flux rope in panel (d)).
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Region R2: Figure 6.6 (a) shows the side view of a 3D null point geometry of

magnetic field lines and the bottom boundary Bz overlaid with log Q ranging

between 5 and 10. Panel (b) depicts an enlarged view of the 3D null location,

marked black. The height of the null is found to be ≈ 3 Mm from the photosphere.

The null is detected using the bespoke procedure (Kumar & Bhattacharyya, 2011;

Nayak et al., 2020) that approximates the Dirac delta on the grid as

n(Bi) = exp
[
−
∑
i=x,y,z

(Bi −Bo)
2/d2

o

]
, (6.1)

where small constants Bo and do correspond to the isovalue of Bi and the Gaussian

spread. The function n(Bi) takes significant values only if Bi ≈ 0 ∀i, whereupon a

3D null is the point where the three isosurfaces having isovalues Bi = Bo intersect.

Region R3: Side view of the magnetic field line morphology in region R3 is

shown in Figure 6.6 (c), where the yellow surface corresponds to n = 0.9. Panel (d)

highlights a “fish-bone-like” structure, similar to the schematic in Figure 5 of Wang

et al. (2014). To show that in the limiting case n = 0.9 reduced to a null line,

we plot corresponding contours in the range 0.6 ≤ n ≤ 0.9 on three pre-selected

planes highlighted in panel (e). The size reduction of the contours with increasing

n indicates the surface converging to a line. Such null lines are also conceptualized

as favorable reconnection sites (Wang et al., 2014).

Region 4 Figure 6.6 (f) shows magnetic field lines relevant to plasma rotation in

B4. Notably, the null line from the R3 intrudes into R4 and the extreme left plane

in R3 (Figure 6.6 (e)) is also shared by the R4.
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6.4 Results: Comparison of the magnetic recon-

nections in the Hall MHD and MHD sim-

ulations of the flaring active region NOAA

12734

In the spirit of earlier related works (Prasad et al., 2018; Nayak et al., 2019; Prasad

et al., 2020), the plasma is idealized to be incompressible and thermodynamically

inactive as well as explicitly nonresistive. While this relatively simple idealiza-

tion is naturally limited, it exposes the basic dynamics of magnetic reconnections

unobscured by the effects due to compressibility and heat transfer. Albeit the

latter are important for coronal loops (Ruderman & Roberts, 2002), they do not

directly affect the magnetic topology—in focus of this Chapter. Historically rooted

in classical hydrodynamics, such idealizations have a proven record in theoretical

studies of geo/astrophysical phenomena (Rossby et al., 1938; Dahlburg et al., 1991;

Bhattacharyya et al., 2010; Bora et al., 2021). Inasmuch as their cognitive value

depends on an a posteriori validation against the observations, the present study

offers yet another opportunity to do so.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6: Panel (a) shows a 3D null spine-fan configuration in region R2 with
the Bz as the bottom boundary overlaid with log Q between 5 and 10. Panel (b)
is zoomed view of (a), highlighting the 3D null-point (in black)—an iso surface of
n = 0.6 indicated by an arrow. Panel (c) shows the side view of magnetic field
lines structure in region R3 along with the yellow surface representing the null-line
corresponding to n = 0.9. Panel (d) shows the top-down view of red magnetic
field lines of (c) forming fish-bone-like structure. In panel (e) we show the value
of n on the three different vertical planes passing through the cross-sections of the
null-line surface. Notably, the planes show circles in the cross-section at different
locations which indicates that the yellow surface is a null line. Panel (f) depicts
magnetic field lines morphology in region R4 along with the value of n on a vertical
plane where the green circular contour corresponds to n = 0.6 suggesting the right
part of magnetic field lines morphology may be a part of the null-line geometry
(shown in panel (c)).

The Hall forcing has been incorporated (Bora et al., 2021) in the computa-

tional model EULAG-MHD (Smolarkiewicz & Charbonneau, 2013) to solve the
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dimensionless Hall MHD equations,

∂v

∂t
+ (v · ∇)v = −∇p+ (∇×B)×B +

1

RA
F

∇2v , (6.2)

∂B

∂t
= ∇× (v×B)− dH∇× ((∇×B)×B) , (6.3)

∇ · v = 0 , (6.4)

∇ ·B = 0 , (6.5)

where RA
F = (vAL0/ν), ν being the kinematic viscosity—is an effective fluid

Reynolds number, having the plasma speed replaced by the Alfvén speed vA. Here-

after RA
F is denoted as fluid Reynolds number for convenience. The transformation

of the dimensional quantities (expressed in cgs-units) into the corresponding non-

dimensional quantities,

B −→ B

B0

, x −→ x

L0

, v −→ v

vA
, t −→ t

τA
, p −→ p

ρ0vA2
, (6.6)

assumes arbitrary B0 and L0 while the Alfvén speed vA ≡ B0/
√

4πρ0. Here ρ0 is

a constant mass density, and dH is the Hall parameter. In the limit of dH = 0,

Equation 6.2 - Equation 6.5 reduce to the MHD equations (Prasad et al., 2018).

The governing equations (Equation 6.2 - Equation 6.5) are numerically inte-

grated using the 3D HMHD solver described in Chapter 3.

The simulations are carried out by mapping the physical domain of 256 ×

128 × 128 pixels on the computational domain of x ∈ {−1, 1}, y ∈ {−0.5, 0.5},

z ∈ {−0.5, 0.5} in a Cartesian coordinate system. The dimensionless spatial step

sizes are ∆x = ∆y = ∆z ≈ 0.0078. The dimensionless time step is ∆t = 5× 10−4,

set to resolve whistler speed—the fastest speed in incompressible Hall MHD. The

rationale is briefly presented in Appendix A. The corresponding initial state is

motionless (v = 0) and the initial magnetic field is provided from the non-FFF

extrapolation. The non-zero Lorentz force associated with the extrapolated field

pushes the magnetofluid to initiate the dynamics. Since the maximal variation

of magnetic flux through the photosphere is only 2.28% of its initial value during

the flare (not shown), the Bz at the bottom boundary (at z = 0) is kept fixed

throughout the simulation while all other boundaries are kept open. For velocity,
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all boundaries are set open. The mass density is set to ρ0 = 1.

The fluid Reynolds number is set to 500, which is roughly two orders of magni-

tude smaller than its coronal value ≈ 25000 (calculated using kinematic viscosity

ν = 4 × 109 m2s−1 (Aschwanden, 2005) in solar corona). Without any loss in

generality, the reduction in RA
F can be envisaged to cause a reduction in computed

Alfvén speed, vA|computed ≈ 0.02× vA|corona where the L for the computational and

coronal length scales are set to 71 Mm and 100 Mm respectively. This diminished

Alfvén speed reduces the requirement of computational resources and also relates

it with the observation time. The results presented herein pertain to a run for

1200∆t which along with the normalizing τA ≈ 3.55 × 103 s roughly corresponds

to an observation time of ≈ 35 minutes. For the ease of reference in comparison

with observations, we present the time in units of 0.005τA (which is 17.75 s) in the

discussions of the figures given in this chapter. Although the coronal plasma ideal-

ized to have reduced Reynolds number is inconsequential here, in a comparison of

MHD and Hall MHD evolution, we believe the above rationale merits further con-

templation. Undeniably such a coronal plasma is not a reality. Nevertheless, the

reduced RA
F does not affect the reconnection or its consequence, but slows down the

dynamics between two such events and importantly—reduces the computational

cost, making data-based simulations realizable even with reasonable computing

resources. A recent work by Jiang et al. (2016) used homologous approach toward

simulating a realistic and self-consistent flaring region.

In the present simulations, all parameters are identical for the MHD and the

Hall MHD except for the dH , respectively set to 0 and 0.004. The value 0.004

is motivated by recognizing ILES dissipation models intermittent magnetic recon-

nections at the O(‖ ∆x ‖) length scales, consistent with the thesis put forward in

Introduction, we specify an appreciable Hall coefficient as dH = 0.5∆z/L ≈ 0.004,

where L = 1 ≡ smallest extent of the computational volume, having ∆y = ∆z ≈

0.0078 as the dissipation scales because of the ILES property of the model. Corre-

spondingly, the value is also at the lower bound of the pixel or scale order approx-

imation and, in particular, an order of magnitude smaller that its coronal value

valid at the actual dissipation scale. An important practical benefit of this selec-

tion is the optimization of the computational cost while keeping magnetic field line
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dynamics tractable. Importantly, with dissipation and Hall scales being tied, an

increased current density at the dissipation scale introduces additional slippage of

field lines in Hall MHD over MHD (due to the Hall term) and, may be responsible

for more effective and faster reconnections found in the Hall simulation reported

below.

The simulated Hall MHD and MHD dynamics leading to the flare show unam-

biguous differences. Here we document these differences by comparing method-

ically simulated evolution of the magnetic structures and topologies in the AR

NOAA 12734—namely, the flux rope, QSLs, and null points—identified in the

extrapolated initial data in the regions R1-R4.

6.4.1 Region R1

The dynamics of region R1 are by far the most complex among the four selected

regions. To facilitate future reference as well as to outline the organization of the

discussion that follows, Table 6.1 provides a brief summary of our findings—in a

spirit of theses to be proven by the simulation results.

Magnetic field

lines structure

Hall MHD MHD

QSL1 Fast reconnection followed by

a significant rise of loops, even-

tually reconnecting higher in

the corona.

Slow reconnection followed by

a limited rise of loops.

QSL2 Fast reconnection causing the

magnetic field lines to entirely

disconnect from the polarity

P2.

Due to slow reconnection mag-

netic field lines remain con-

nected to P2.

Flux rope Fast slipping reconnection of

the flux-rope foot points, fol-

lowed by the expansion and

rise of the rope envelope.

Slow slipping reconnection and

rise of the flux-rope envelope;

the envelope does not reach the

QSL1.

Table 6.1: Salient features of magnetic field lines dynamics in R1
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Figure 6.7: Snapshots of the global dynamics of magnetic field lines in region
R1 during the Hall MHD and MHD simulations are shown in panels (a)-(d) and
panels (e)-(f) respectively. Panels (a) and (b) show the departure of foot points
of magnetic field lines Set II (maroon) away from polarity P2 between t=19 and
46 on the bottom boundary (marked by black arrow). Panel (c) depicts the rising
magnetic field lines Set II (maroon) higher up in the solar corona at t=80 (marked
by black arrow) and (d) shows subsequent connectivity change of rising magnetic
field lines at t= 81, due to reconnection with the Set I (green) magnetic field lines.
Panels (e) and (f) depict the departure of foot points of magnetic field lines Set II
(maroon) away from P2 between t= 19 to 113 which is similar to the Hall MHD but
delayed in time—indicating the slower dynamics in the MHD. Notably, significant
rise of magnetic field lines Set II and consequent reconnection of it with magnetic
field lines Set I higher up in the solar corona is absent in the MHD simulation.

The global dynamics of magnetic field lines in region R1 is illustrated in Fig-

ure 6.7; consult Figure 6.5 for the initial condition and terminology. The snapshots
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from the Hall MHD and MHD simulations are shown in panels (a)-(d) and (e)-(f),

respectively. In panels (a) and (b), corresponding to t = 19 and t = 46, the foot

points of magnetic field lines Set II (near P2, marked maroon) exhibit slipping re-

connection along high values of the squashing factor Q indicated by black arrows.

Subsequently, between t = 80 and 81 in panels (c) and (d), the magnetic field lines

Set II rise in the corona and reconnect with magnetic field lines Set I to change

connectivity. The MHD counterpart of the slipping reconnection in panels (e) and

(f), corresponds to magnetic field lines Set II between t=19 and t=113. It lags

behind the Hall MHD displays, thus implying slower dynamics. Furthermore, the

magnetic field lines Set II, unlike for the Hall MHD, do not reach up to the mag-

netic field lines Set I constituting QSL1 and hence do not reconnect. The decay

index is calculated for each time instant for both the simulations and is found to

be less than 1.5 above the flux rope, indicating an absence of the torus instability

(?). For more detail, Figure 6.8 and Figure 6.9 illustrate evolution of QSL2 and

flux rope separately.

Figure 6.8 panels (a)-(b) and (c)-(d) show, respectively, the instants from the

Hall MHD and MHD simulations of QSL2 between P1, P2 and N1. The Hall

MHD instants show magnetic field lines that were anchored between P2 and N1 at

t = 10 have moved to P1 around t=102, marked by black arrows in both panels.

The magnetic field lines anchored at P2 moved to P1 along the high Q values—

signifying the slipping reconnection. The MHD instants in panels (c)-(d) show

the connectivity changes of the violet and white colored magnetic field lines. The

white field line was initially connecting P1 and N1, whereas the violet field line

was connecting P2 and N1. As a result of reconnection along QSL, the white

field line changed its connectivity from P1 to P2 and violet field line changes the

connectivity from P2 to P1 (marked by black arrows). Notably, in contrast to

the Hall MHD evolution, all magnetic field lines initially anchored in P2 do not

change their connectivity from P2 to P1 during the MHD evolution, indicating

the slower dynamics. The flux rope has been introduced in panels (c) and (d) of

Figure 6.5, respectively, below the QSL2 and in enlargement. Its Hall MHD and

MHD evolutions along with the twists on three different vertical cross sections are

shown in panels (a)-(f) and (g)-(i) of Figure 6.9, respectively. Magnetic field lines
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Figure 6.8: Snapshots of the Hall MHD and MHD evolution of QSL2 (Figure 6.5
(c)) are shown in panels (a)-(b) and panels (c)-(d) respectively. Panels (a)-(b)
show magnetic field linesanchored in the positive polarity P2 at t=10 have moved
to the polarity P1 by t=102 and changed their connectivity (marked by black
arrow) due to reconnection along QSL during the Hall MHD. Panels (c)-(d) show
the connectivity changes of the violet and white color magnetic field lines during
the MHD evolution. The white field line was initially connecting the polarities
P1 and N1 whereas the violet field line was connecting P2 and N1. As a result
of reconnection along QSL the white field line changes its connectivity from P1
to P2 and violet field line changes the connectivity from P2 to P1 (marked by
black arrows). Notably, unlike the Hall MHD simulation not all magnetic field
lines move to P1 from P2 due to reconnection along QSL during the MHD which
indicates the slower dynamics.

constituting the rope, rise substantially higher during the Hall MHD evolution as

a result of slipping reconnection along the high Q in panels (c)-(f). In panel (c) at

t = 32, the foot points of the rope that are anchored on right side (marked by black

arrow) change their connectivity from one high Q regime to another in panel (d)

at t=33; i.e., the foot points on the right have moved to the left side (marked by

black arrow). Afterwards, the magnetic field lines rise because of the continuous

slipping reconnection, as evidenced in panels (e) to (f). Comparing panels (a)

with (g) at t = 10 and (c) with (h) at t=32, we note that the twist value Tw is

higher in the Hall MHD simulation. Panels (h)-(i) highlight the displaced foot
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(a)

t=10 HMHD

(b)

t=28 HMHD

(c)

t=32 HMHD

(d)

t=33 HMHD

(e)

t=46 HMHD

(f)

t=47 HMHD

(g)

t=10 MHD

(h)

t=32 MHD

(i)

t=120 MHD

Figure 6.9: Time sequence showing the Hall MHD (panels (a)-(f)) and MHD
(panels (g)-(i)) evolution of the flux rope (shown in Figure 6.5(c)) along with the
twist Tw. Panel (a) shows the twist on the middle and the right plane on flux rope
is higher than initial values (c.f. Figure 6.5(d)) and reduced with time in panel (b).
Panels (c)-(d) depict the connectivity change of the foot point of rope from right
to left (indicated by black arrow) due to reconnection along QSL. Panels (e)-(f)
show the connectivity change of magnetic field lines on left hand side (indicated
by black arrow). Panels (g)-(i) depict the dynamic rise of the flux rope between
t=10 and t=120 during the MHD simulation. Notably, the foot points of the rope
on the right side (marked by black arrow) at t=32 in (h) have moved towards left
by t=120 in (i) as a result of reconnection along QSL.

points of flux rope due to slipping reconnection at t=32 and t=120 (cf. black

arrow). The rope is preserved throughout the Hall MHD and MHD simulations.

The rise and expansion of the flux-rope envelope owing to slipping reconnection

is remarkable in the Hall MHD simulation. Dud́ık et al. (2014) have already

shown such a flux-rope reconnection along QSL in a J-shaped current region,

with slipping reconnection causing the flux rope to form a sigmoid (S-shaped hot

channel observed in EUV images of SDO/AIA) followed by its rise and expansion.

Further insight is gained by overlaying the flux rope evolution shown in Figure 6.9

with direct volume rendering of |J|/|B| (Figure 6.10 and Figure 6.11) as a measure

of magnetic field gradient for the Hall MHD and MHD simulations. In the Hall
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MHD case, appearance of large values of |J|/|B| > 475 inside the rope (panels

(a) to (c)) and foot points on left of the rope (panels (d) to (e)) are apparent.

The development of the large |J|/|B| is indicative of reconnection within the rope.

Contrarily, MHD simulation lacks such high values of |J|/|B| in the same time span

(panels (a)-(b)) and the field lines show no slippage—agreeing with the proposal

that large currents magnify the Hall term, resulting into more effective slippage of

field lines.

(a)t=28 (b)t=32 (c)t=33

(d)t=46 (e)t=47 (f)t=60

Figure 6.10: Temporal variation of the direct volume rendering of (|J|/|B|) along
with the flux rope is shown during the Hall MHD simulation. Noticeably, the
high magnetic field gradient regions with (|J|/|B|) ≥ 475 develop within (panels
(a) to (c)) and on the left side of the flux rope (panels (d) to (f)). The values
(|J|/|B|) ≥ 475 in each panel are enclosed within the black rectangular boxes.

6.4.2 Region R2

To compare the simulated magnetic field lines dynamics in region R2 with the

observed tip of the W-shaped flare ribbon B2 (Figure 6.4 (a)) during the Hall MHD

and MHD evolution, we present the instants from both simulations at t=70 in

panels (a) and (b) of Figure 6.12 respectively. Importantly, the lower spine remains

anchored to the bottom boundary during the Hall MHD simulation. Further,

Figure 6.13 shows the evolution of the lower spine along with the |J|/|B| on the

bottom boundary for the Hall MHD (panels (a) to (d)) and MHD (panels (e) to

(h)) cases. In the Hall MHD case, noteworthy is the slipping motion of lower spine

(marked by the black arrows) tracing the |J|/|B| > 350 regions on the bottom
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(a)t=28 (b)t=33 (c)t=34

(d)t=47 (e)t=60 (f)t=110

Figure 6.11: Temporal variation of the direct volume rendering of (|J|/|B|) along
with the flux rope is shown during the MHD simulation. Panels (a) and (b) shows
the absence of high values of (|J|/|B|) within the rope at t = 28 and t = 32
but in later panels (c) to (f) (|J|/|B|) ≥ 475 appears (enclosed by the black
rectangular boxes). Notably, as compared to the Hall MHD case (Figure 6.10),
the development of (|J|/|B|) is not significant in the region R1 during the MHD.

(a)

t=70

HMHD

(b)

t=70

MHD

Figure 6.12: Panels (a) and (b) show the comparison of magnetic field lines topol-
ogy in region R2 at t=70 with the flare ribbons observed in the SDO/AIA 304 Å
channel (side views) during the Hall MHD and MHD simulations respectively. The
inset images on the top left corner in each panel show the top view of the same
magnetic field lines topology. Notably, the spine is anchored in the Hall MHD
while it is not connected to the bottom boundary in the MHD at t=70 (marked
by white arrow in inset images).

boundary (panels (a) to (b)). Whereas, in the MHD such high values of |J|/|B|

are absent on the bottom boundary—suggesting the slippage of the field lines on

the bottom boundary to be less effective in contrast to the Hall MHD. The finding

is in agreement with the idea of enhanced slippage of field lines due to high current

densities as conceptualized in the introduction. The anchored lower spine provides
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a path for the plasma to flow downward to the brightening segment B2. In the

actual corona, such flows result in flare brightening (Benz, 2008). In contrast, the

lower spine gets completely disconnected from the bottom boundary (Figure 6.12

(b)) in the MHD simulation, hence failing to explain the tip of the W-shaped flare

ribbon in B2. The anchored lower spine in the Hall MHD simulation is caused by

a complex series of magnetic field lines reconnections at the 3D null and along the

QSLs in R2.

(a)

t=42

HMHD

(b)

t=55

HMHD

(c)

t=66

HMHD

(d)

t=75

HMHD

(e)

MHD

t=42

(f)

MHD

t=55

(g)

MHD

t=66

(h)

MHD

t=75

Figure 6.13: Panels (a) to (d) depict the slipping motion of the lower spine field
lines (also shown in the Figure 6.6) overlaid with the |J|/|B| on the bottom bound-
ary during the Hall MHD evolution. The motion is marked by the black arrows
in all the panels indicating the successive change in the location of field lines on
the bottom boundary. A and B (in panels (a) and (b)) are the two regions with
|J|/|B| > 350 on the bottom boundary (just below the lower spine). Notably, the
field lines follow the high values of |J|/|B| on the bottom boundary and remain
anchored. Panels (e) to (h) show the evolution of the same lower spine field lines
during the MHD simulation. The large values of |J|/|B| do not appear below
the lower spine (on the bottom boundary) and it does not remain anchored from
t ≈ 55 onward (panels (f) to (h)).

6.4.3 Region R3

Hall MHD and MHD simulations of magnetic field lines dynamics around the null-

line are shown in Figure 6.14 and Figure 6.15 respectively. Figure 6.14 shows

the blue magnetic field lines prior and after the reconnections (indicated by black

arrows) between t=4 to 5 (panels (a)-(b)), t=52 to 53 (panels (c)-(d)), and t=102

to 103 (panels (e)-(f)) during the Hall MHD simulation. Figure 6.15 shows the
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same blue magnetic field lines prior and after the reconnections (indicated by

black arrows) between t=12 to 13 (panels (a)-(b)), t=59 to 60 (panels (c)-(d)),

and t=114 to 115 (panels (e)-(f)) during the MHD simulation. Comparison of the

panels (a)-(f) of Figure 6.14 with the same panels of Figure 6.15 reveals earlier

reconnections of the blue magnetic field lines in the Hall MHD simulation. In both

figures, green velocity vectors on the right represent the local plasma flow.

(a)

t=04

(b)

t=05

(c)

t=52

(d)

t=53

(e)

t=102

(f)

t=103

Figure 6.14: Time sequence showing the blue field line prior and after reconnection
(indicated by back arrow) in region R3 during the Hall MHD simulation. Evolution
of the flow vectors is depicted by green arrows (on the right side)—mimicking the
direction of the plasma flow. The plane along the cross section of magnetic field
lines morphology in R3, showing the blue circular contours represent the value of
n (also shown in Figure 6.6(d)).

They get aligned downward along the foot points of the fan magnetic field
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(a)

t=12

(b)

t=13

(c)

t=59

(d)

t=60

(e)

t=114

(f)

t=115

Figure 6.15: Time sequence showing the blue field line prior and after reconnection
(indicated by back arrow) in region R3 during the MHD simulation. Evolution of
the flow vectors is depicted by green arrows (on the right side)—mimicking the
direction of the plasma flow. The plane along the cross section of magnetic field
lines morphology in R3, showing the blue circular contours represent the value of
n (also shown in Figure 6.6(d)). Notably, reconnection of the blue magnetic field
lines is slightly delayed in comparison to its Hall MHD counterpart.

lines, as reconnection progresses. Consequently, the plasma flows downward and

impacts the denser and cooler chromosphere to give rise to the brightening in B3.

The velocity vectors pointing upward represent a flow toward the null-line. The

plasma flow pattern in R3 is the same in the Hall MHD and in the MHD simulation.

The vertical yz plane passing through the cross section of the null-line surface (also

shown in Figure 6.6 (d)) in all the panels of Figure 6.14 and Figure 6.15 shows the
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variation of n with time. It is evident that the null is not destroyed throughout

the Hall MHD and MHD evolution. Structural changes in the field lines caused by

reconnection is near-identical for both the simulations, indicating inefficacy of the

Hall term. This inefficacy is justifiable as |J|/|B| remains small ≈ 10 (not shown)

in both Hall MHD and MHD evolution.

6.4.4 Region R4

(a)

t=60

(b)

t=75

(c)

t=86

(d)

t=100

Figure 6.16: Panels (a)-(d) show the global dynamics of magnetic field lines in
region R4 during the Hall MHD simulation. Inset images in each panel (on right)
depict the time sequence of the zoomed top-down view of the rotational motion of
magnetic field lines. The background shows the variation of the z-component of
flow ∈ [-0.00022,0.00032] in all inset images. The red vectors represent the plasma
flow and change its direction in an anticlockwise manner in panels (a)-(d). The
rotational motion of magnetic field lines coincides with the circular part of the
flow.

The development of the circular motion of magnetic field lines in region R4

during the Hall MHD simulation is depicted in Figure 6.16. It shows the global

dynamics of magnetic field lines in R4 and the inset images show the zoomed view

of magnetic field lines in R4 to highlight the circular motion of magnetic field lines.

The bottom boundary is Bz in the main figure while the inset images have the z
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(a) (b) (c)

(d) (e) (f)

Figure 6.17: Panels (a) to (f) show the side view of the rotating magnetic field lines
structure in the region R4 overlaid with |J|/|B|. The figure depicts the temporal
development of strong magnetic field gradient regions of |J|/|B| > 225 (enclosed
in the blue rectangular boxes) within the rotating magnetic structure.

component of the plasma flow at the bottom boundary (on xy plane). The red

vectors represent the plasma flow direction as well as magnitude in all the panels

of Figure 6.16 where the anticlockwise pattern of the plasma flow is evident. The

global dynamics highlight reconnection of the loop anchored between positive and

negative polarities at t=60 in Figure 6.16 as it gets disconnected from the bottom

boundary in panels (c)-(d) of Figure 6.16. In simulation an anticlockwise motion of

foot points in the same direction as the plasma flow is found, indicating field lines

to be frozen in the fluid. The trapped plasma may cause the rotating structure

B4 in the observations (c.f. ?? (a)). However, no such motion is present during

the MHD evolution of the same magnetic field lines (not shown). An interesting

feature noted in the simulation is the clockwise slippage of field lines after the initial

anticlockwise rotation. Further analysis of R4 using the direct volume rendering

of |J|/|B| is presented in Figure 6.17. The figure shows |J|/|B| attains high values

≥ 225 (enclosed by the blue rectangles) within the rotating field lines from t≈86

onward. This suggests the slippage of field lines is, once again, related to the high

magnetic field gradients.

For completeness, we present the snapshots of an overall magnetic field lines

morphology including the magnetic structures and topology of regions R1, R2,

R3, and R4 together, overlaid with 304 Å and 171 Å from the Hall MHD and
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MHD simulations. Figure 6.18 (a) shows an instant (at t=75) from the Hall

MHD simulation where the topologies and magnetic structures in R1, R2, R3,

and R4, plus the additionally drawn locust color magnetic field lines between

R2 and R3 are shown collectively. It shows an excellent match of the magnetic

field lines in R2 with the observed tip of W-shaped flare ribbon at B2, which is

pointed out by the pink arrow in panel (a). Foot points of the spine-fan geometry

around the 3D null orient themselves in the same fashion as the observed tip of

the W-shaped flare ribbon at B2 as seen in 304 Å channel of SDO/AIA. The

rising loops indicated by the white arrow correspond to the same evolution as

shown in Figure 6.7. An overall magnetic field lines morphology mentioned in

Figure 6.16 (a) is given at the same time (t=75) during the MHD simulation

overlaid with 304 Å image in Figure 6.16 (b). Importantly, unlike the Hall MHD

simulation, the MHD simulation does not account for the anchored lower spine

and fan magnetic field lines of the 3D null at the center of the B2. Also, the

significant rise of overlying maroon magnetic field lines and the circular motion

of the material in B4 is captured in the Hall MHD simulation only. In panel

(c) magnetic field lines overlaid with 171 Å image shows the magnetic field lines

(higher up in the solar atmosphere) have resemblance with the post-flare loops

during the Hall MHD. Overall, the Hall MHD evolution seems to be in better

agreement with the observations in comparison to the MHD evolution.

6.5 Summary

In this Chapter the data-based Hall MHD and MHD simulations are compared for

the flaring Active Region NOAA 12734 as a test bed. Importance of the Hall MHD

stems from the realization that the Hall term in the induction equation cannot

be neglected in presence of the magnetic reconnection—the underlying cause of

solar flares. The selected event is the C1.3 class flare on March 08, 2019 around

03:19 UT for the aforementioned comparison. Although the event is analyzed

and reported in the literature, it is further explored using the multi-wavelength

observations from SDO/AIA. The identified important features are: an elongated

extreme ultraviolet (EUV) counterpart of the eruption on the western side of the
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(a)

Hall MHD

(b)

MHD

(c)

Hall MHD

Figure 6.18: Top-down view of an overall magnetic field lines morphology overlaid
on the SDO/AIA 304 Å (panels (a) and (b)) and 171 Å images (panel (c)). An-
chored magnetic field lines foot points in central part match well with the observed
tip of the W-shaped flare ribbon (marked by pink arrow in panel (a)) in the Hall
MHD while magnetic field lines foot points are completely disconnected from the
bottom boundary in the MHD (panel (b)). Loops rising higher up in the corona
is remarkable in the Hall MHD (indicated by white arrow in panel (a)).

AR, a W-shaped flare ribbon and circular motion of cool chromospheric material on

the eastern part. The magnetic field line dynamics near these features are utilized

to compare the simulations. Notably, the simulations idealize the corona to have

an Alfvèn speed which is two orders of magnitude smaller than its typical value.

Congruent to the general understanding, the Hall parameter is selected to tie the

Hall dynamics to the dissipation scale O(∆x) in the spirit of the ILES carried out

in the Chapter. The magnetic reconnection here is associated with the slippage
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of magnetic field lines from the plasma parcels, effective at the dissipation scale

due to local enhancement of magnetic field gradient. The same enhancement also

amplifies the Hall contribution, presumably enhancing the slippage and thereby

making the reconnection faster and more effective than the MHD as put forward

in the prop-hall-rec.

The coronal magnetic field is constructed by extrapolating the photospheric

vector magnetic field obtained from the SDO/HMI observations employing the

non-FFF technique (Hu et al., 2010). The concentrated distribution of the Lorentz

force on the bottom boundary and its decrease with the height justify the use of

non-FFF extrapolation for the solar corona. The initial non-zero Lorentz force is

also crucial in generating self-consistent flows that initiate the dynamics and cause

the magnetic reconnections. Analyses of the extrapolated magnetic field reveal

several magnetic structures and topologies of interest: a flux rope on the western

part at flaring location, a 3D null point along with the fan-spine configuration at

the centre, a “Fish-bone-like structure” surrounding the null-line on the eastern

part of the AR. All of these structures are found to be co-spatial with the observed

flare ribbon brightening.

The Hall MHD simulation shows faster slipping reconnection of the flux rope

foot points and overlying magnetic field lines (constituting QSLs above the flux

rope) at the flaring location. Consequently, the overlying magnetic field lines rise,

eventually reaching higher up in the corona and reconnecting to provide a path for

plasma to eject out. The finding is in agreement with the observed elongated EUV

counterpart of the eruption on western part of the AR. Contrarily, such significant

rise of the flux rope and overlying field lines to subsequently reconnect higher up

in the corona is absent in the MHD simulation—signifying the reconnection to

be slower compared to the Hall MHD. Intriguingly, rise and expansion of the flux

rope and overlying field lines owing to slipping reconnection on QSLs has also been

modelled and observed in an earlier work by Dud́ık et al. (2014). These are typical

features of the “standard solar flare model in 3D”, which allows for a consistent

explanation of events which are not causally connected (Dud́ık et al., 2014). It

also advocates that null-points and true separatrices are not required for the erup-

tive flares to occur—concurring the results of this work. Hall MHD evolution of
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the fan-spine configuration surrounding the 3D null point is in better agreement

with the tip of W-shaped flare ribbon at the centre of the AR. The lower spine

and fan magnetic field lines remain anchored to the bottom boundary throughout

the evolution which can account for the plasma flowing downward after the re-

connection and cause the brightening. Whereas in the MHD, the lower spine gets

disconnected and cannot account for the brightening. The reconnection dynamics

around the null-line and the corresponding plasma flow direction is same in the

Hall MHD as well as the MHD simulation and agrees with the observed brighten-

ing. Nevertheless, reconnection is earlier in the Hall MHD. Hall MHD evolution

captures an anti-clockwise circular motion of magnetic field lines in the left part of

the AR which is co-spatial with the location of the rotating chromospheric mate-

rial in eastern side of the AR. No such motion was found in the MHD simulation.

Importantly, the simulations explicitly associate generation of large magnetic field

gradients to Hall MHD compared to MHD, resulting in faster and more efficient

field line slippage because of the enhanced Hall term.

Overall, the results documented in the Chapter show the Hall MHD explains

the flare brightening better than the MHD, prioritizing the requirement to include

Hall MHD in future state-of-the-art data-based numerical simulations.





Chapter 7

Summary and Future Prospects

7.1 Summary

In this thesis, the role of Hall effect in magnetic reconnection has been investi-

gated by employing numerical simulations which are initiated with analytical and

observed solar magnetic fields. The key problems of fast and impulsive reconnec-

tion have been addressed. For the works presented in this thesis, a comparative

study of reconnections and the evolution of magnetic structures in the presence

and absence of Hall effect is carried out. For the purpose, we have developed

a 3D HMHD solver by incorporating Hall term in the well established computa-

tional model— EULAG MHD. The development of a 3D HMHD solver benefits

from the Implicit Large Eddy Simulation (ILES) nature of EULAG MHD which

exhibits numerical diffusion determined by the resolution (Chapter 3). The re-

quirement of very large spatial resolution is overcome by tying the Hall effect with

the dissipation scale so that an increased current density at the dissipation scale

enhances the Hall effect. Subsequently, benchmarking (Chapter 4) is done with

an initially unidirectional sinusoidal magnetic field which has an initial non-zero

Lorentz force. This choice of initial condition allows us to validate the developed

3D HMHD solver without repeating the traditional simulations using the Harris

current-sheet equilibrium or the GEM challenge. Hall MHD and MHD numerical

simulations are carried out in the presence and absence of the Hall term. MHD

simulation results show a symmetric magnetic field evolution in the computation

domain. Magnetic reconnections generate magnetic flux tubes made by disjoint
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magnetic field lines. Whereas, during the Hall MHD simulation, the evolution be-

comes asymmetric and 3D due to the generation of an out-of-reconnection plane

magnetic field component. The magnetic energy evolution is identical. The time

derivative of growth rate of current density shows abrupt changes during the Hall

MHD—implying impulsiveness. These results are in concurrence with the earlier

Hall MHD simulations in the literature and validate the developed 3D HMHD

solver. Along with the flux tube, magnetic reconnections also generate magnetic

flux rope—a twisted set of field lines in the Hall MHD. When viewed favorably,

the rope and the tube appear as magnetic islands. Further evolution leads to

the breakage of primary islands into secondary islands and later their merging is

observed. Overall, the results agree with the existing scenarios of Hall-assisted

reconnection based on physical arguments and other recent simulations including

those on the GEM challenge. An important finding is the formation of complex 3D

magnetic structures, which cannot be apprehended from 2D models or calculations

although their projections agree with the latter. Alongside, we have numerically

explored the Whistler mode propagation vis-a-vis its analytical model and found

the two to be matching reasonably well in the Hall MHD simulations.

Understanding the evolution of a magnetic flux rope is instructive to under-

stand the coronal mass ejections owing to eruptive flares, prominence or filament

eruptions on the Sun. Therefore, the developed 3D HMHD solver has been further

employed to simulate the Hall effect on the generation and evolution of magnetic

flux rope for two cases depending upon the initial conditions (Chapter 5). The

simulations in the first and second cases are initiated with an axisymmetric and the

three-dimensional bipolar sheared arcade like magnetic fields, respectively. Mag-

netic flux rope in the first case is levitating and unanchored one, whereas in other

case it is anchored to the bottom boundary. A comparative investigation of the

Hall MHD and MHD simulations reveal that the primary reconnections through

which the flux rope is generated are identical in both the simulations for both cases.

However, further evolution of flux ropes is influenced by the Hall forcing as the re-

connections proceed. The first case, once again shows a reasonable maintenance of

symmetry in the standard MHD simulation, whereas a clear symmetry-breaking—

leading to generation of three dimensional magnetic structures—appears to be a
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signature of the Hall effect. In Hall MHD the flux rope evolves through a series

of complex geometries while rotating along its axis. When viewed favorably, it

appears to contain structures reminiscent of the “number eight (8)”, which is the

result of internal reconnection within rope. Notably, the magnetic energies, in

the presence and absence of the Hall forcing, vary almost identically for both the

cases—consistent with the theoretical understanding that the Hall term directly

does not change the magnetic energy dissipation rate.

In the second case, the flux rope is found to generate in consequence of repet-

itive reconnection at three-dimensional magnetic nulls—detected using trilinear

method of null detection techniques, in both Hall MHD as well as MHD simula-

tions while preserving the topological degree. Twisting of magnetic field lines in the

vicinity of three-dimensional nulls—an unique feature found during the Hall MHD

evolution of rope which further leads to the formation of large scale flux rope. This

result suggests that the Hall effect modify dynamics of magnetic structures around

small-scale (reconnection site) which further generates large scale structure, hence

relating the small scale and large scale dynamics. Also, the faster formation of

post-reconnection arcades in the Hall MHD signifies a faster dynamics.

After gaining the experience with of Hall effect 3D magnetic reconnection, the

numerical model has been further employed to simulate the Hall effect in magnetic

reconnection for a flaring active region (AR) on the Sun as a testbed (Chapter 6).

This work compares the data-based Hall MHD and MHD simulations using the

flaring NOAA AR 12734 as a test bed. For the purpose, the event under consider-

ation, is the C1.3 class flare on 2019 March 8 around 03:19 UT. Although the event

is analyzed and reported in the literature, it is further explored using the multi

wavelength observations from SDO/AIA. The important features outline in the

observation include an elongated EUV counterpart of the eruption on the western

side of the AR, a W-shaped flare ribbon and the circular motion of cool chromo-

spheric material on the eastern part. The magnetic field line dynamics related to

these features are compared in the simulations. Notably, the simulations idealize

the corona to have an Alfvèn speed of two orders of magnitude smaller than its

typical value. Conforming with the general understanding, the Hall parameter is

selected to tie the Hall dynamics to the dissipation scale O(∆x) in spirit of the
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implicit large eddy simulations (ILES). The magnetic reconnection here is associ-

ated with the slippage of magnetic field lines from the plasma parcels, effective at

the dissipation scale due to local enhancement of magnetic field gradients. The

same enhancement also amplifies the Hall contribution and enhances the slippage,

thereby making the reconnection faster and more effective in Hall MHD in com-

parison to the MHD. The coronal magnetic field is constructed by extrapolating

the photospheric vector magnetic field obtained from the SDO/HMI observations

employing the non-FFF technique. The concentrated distribution of the Lorentz

force on the bottom boundary and its decrease with the height justify the use of

non-FFF extrapolation for the solar corona. The initial nonzero Lorentz force is

also crucial in generating self-consistent flows that initiate the dynamics and cause

the magnetic reconnections. Analyses of the extrapolated magnetic field reveals

several magnetic structures and topologies of interest: a flux rope on the western

part at the flaring location, a 3D null point along with the fan-spine configuration

at the center, and a “fish-bone-like structure” surrounding the null line on the

eastern part of the AR. All of these structures are found to be cospatial with the

observed flare ribbon brightening. The Hall MHD simulation shows faster slipping

reconnection of the flux-rope footpoints and overlying magnetic field lines (consti-

tuting quasi separatrix layers (QSLs) above the flux rope) at the flaring location.

Consequently, the overlying magnetic field lines rise, eventually reaching higher

up in the corona and reconnecting to provide a path for plasma to eject out. This

finding agrees with the observed elongated EUV counterpart of the eruption on

the western part of the AR. Contrarily, such a significant rise of the flux rope and

overlying field lines to subsequently reconnect higher up in the corona is absent

in the MHD simulation—signifying that the reconnection is slower compared to

the Hall MHD. Interestingly, rise and expansion of the flux rope and overlying

field lines due to slipping reconnection on QSLs have also been modeled and ob-

served in literature. Previous work in literature, also advocates that null points

and true separatrices are not required for the eruptive flares to occur—congruent

with the results of our work. Hall MHD evolution of the fan-spine configuration

surrounding the 3D null point is in better agreement with the tip of the W-shaped

flare ribbon at the center of the AR. The lower spine and fan magnetic field lines
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remain anchored to the bottom boundary throughout the evolution, which can

account for the plasma flowing downward after the reconnection and cause the

brightening, whereas in the MHD the lower spine gets disconnected and cannot

account for the brightening. The reconnection dynamics around the null line and

the corresponding plasma flow direction are the same in the Hall MHD and MHD

simulations and agree with the observed brightening. Nevertheless, reconnection

is earlier in the Hall MHD. Hall MHD evolution nicely captures an anticlockwise

circular motion of magnetic field lines in the left part of the AR that is cospatial

with the location of the rotating chromospheric material on the eastern side of the

AR. No such motion was found in the MHD simulation. Importantly, the simu-

lations explicitly associate generation of large magnetic field gradients with Hall

MHD compared to MHD, resulting in faster and more efficient field line slippage

because of the enhanced Hall term.

Importantly, this thesis explores the role of Hall effect in magnetic reconnec-

tion and addresses the fast and impulsive reconnection within the Hall MHD. A

reasonable agreement between the magnetic field dynamics in a novel Hall MHD

simulation of the observed flare and the spatial features of flare brightening, sug-

gests the Hall MHD to provide a plausible explanation for the flare reconnection.

Crux of the thesis work is that the Hall effect being small scale effect cause the

alteration in the dynamics near reconnection site and in turn affect the dynamics

as large as system scale size, accommodating for faster dynamics.

7.2 Future Prospects

This thesis addresses the role of Hall effect in magnetic reconnection within Hall

MHD framework to understand fast reconnection dynamics with particular focus

on 3D. In line with the explorations carried out in this thesis work, the future

scope should consist the continuation of such investigations of Hall effect on 3D

magnetic reconnection which will be beneficial in understanding the underlying

physics essential for transient explosive activities occurring in astrophysical plas-

mas. Additionally, further improvements in the model can account for the energy

budget and thermodynamics of the transient events. Consequently, the future
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prospects are briefly presented as following:

1. In this thesis, Hall effect on the reconnections responsible for the genera-

tion and evolution of a magnetic flux rope initiated from the sheared bipolar

field has been explored. However, the prominences or filaments on the Sun

resemble to pre-existing magnetic flux rope structure and the exploration

of Hall effect on reconnections driving the eruption of such flux ropes can

be helpful in understanding the underlying physics responsible for the phe-

nomenon like local breakage of prominences followed by the swirling motions

of plasma material. In this context, we plan to do the numerical simulation

of an initial analytical flux rope with an aim to explore the Hall effect on its

evolution.

2. Reasonably good agreement between the dynamics obtained from the novel

data-constrained Hall MHD simulation of a flare and its observations, in-

spires us to perform the Hall MHD data-constrained simulations for the high

resolution magnetic field data (∼ few km) from the ground based observatory

DKIST.

3. We plan to perform observational study as well as numerical simulations to

understand small scale transient events such as microflares and nanoflares

which are important in understanding the coronal heating problems.
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Appendix A

Data-based Hall MHD and MHD

simulations of a flaring solar

active region

The dimensionless time step is obtained by employing the Hall induction equation

∂B

∂t
= −dH∇× ((∇×B)×B), (A.1)

for a stationary fluid. The aforementioned equation is linearized over an equilib-

rium magnetic field B0 to obtain

∂δB

∂t
= −dH [∇× (∇× δB)×B0], (A.2)

δB being the perturbation. To obtain the wave modes, the perturbation is assumed

to be periodic along x and y of a Cartesian coordinate system

δBx = δBy ∝ exp[i(kzz − ωt)]. (A.3)

where the equilibrium field is selected as B0 = B0êz. Straightforward mathematical

manipulations yield the dispersion relation for the Whistler wave as

ω = dHB0kz
2. (A.4)

The wave number is selected as kz = (2π)/∆z, ∆z is the dissipation scale in the
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computational domain, making the choice harmonious with the philosophy used

extensively in the paper. since the dimensionless ρ0 = 1 in the numerical model,

(A.4) can be written

(
∆z

∆t

)
whis

= 4π
3
2dH

(
∆z

∆t

)
Alf

(
1

∆z

)
whis

. (A.5)

With ∆zwhis = ∆zAlfven = 0.0078, namely the dissipation scale in the present

model along with dH=0.004, while ∆tAlf ≈ 10−3 from previous numerical experi-

ments; in the present model ∆t = ∆twhis ≈ 10−4.
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