
LETTER
doi:10.1038/nature10631

A compact system of small planets around a former
red-giant star
S. Charpinet1,2, G. Fontaine3, P. Brassard3, E. M. Green4, V. Van Grootel5,6, S. K. Randall7, R. Silvotti8, A. S. Baran9,10,
R. H. Østensen11, S. D. Kawaler10 & J. H. Telting12

Planets that orbit their parent star at less than about one
astronomical unit (1 AU is the Earth–Sun distance) are expected
to be engulfed when the star becomes a red giant1. Previous obser-
vations have revealed the existence of post-red-giant host stars with
giant planets2–4 orbiting as close as 0.116 AU or with brown dwarf
companions5,6 in tight orbits, showing that these bodies can survive
engulfment. What has remained unclear is whether planets can be
dragged deeper into the red-giant envelope without being disrupted
and whether the evolution of the parent star itself could be
affected7–9. Here we report the presence of two nearly Earth-sized
bodies orbiting the post-red-giant, hot B subdwarf star KIC
05807616 at distances of 0.0060 and 0.0076 AU, with orbital periods
of 5.7625 and 8.2293 hours, respectively. These bodies probably
survived deep immersion in the former red-giant envelope. They
may be the dense cores of evaporated giant planets that were trans-
ported closer to the star during the engulfment and triggered the
mass loss necessary for the formation of the hot B subdwarf, which
might also explain how some stars of this type did not form in
binary systems.

KIC 05807616 (also known as KPD 194314058) is a seemingly
isolated pulsating hot B subdwarf (sdB) star that has been monitored
by the Kepler satellite primarily for the study of its oscillations10–12. It is
at an evolved stage of thermonuclear fusion of helium in its core, and
belongs to the so-called extreme horizontal branch. This star shows a
rich pulsation spectrum mostly composed of gravity (g-)modes13,14. Its
main structural parameters are well determined through asteroseismic
means based on one month of Kepler exploratory data (Table 1)15. We
focus here on additional Kepler time-series photometry obtained for
this star after the exploratory phase.

The analysis of these data revealed many frequencies, most being
associated with stellar oscillations (Fig. 1 and Supplementary Informa-
tion section A1). However, we also found two very weak periodic
modulations in the low-frequency range whose nature is most
intriguing. The timescales involved for these variations are
5.7625 6 0.0001 h (F1, with an amplitude of 52 6 6 parts per million,
p.p.m.) and 8.2293 6 0.0003 h (F2, with an amplitude of ,47 p.p.m.;
see Supplementary Information sections A2 and E). The phase
folded curves show that these variations repeat at a coherent phase
throughout the entire light curve (Fig. 1b and c). We determined that
contamination from a nearby star, stellar pulsations, or rotational
modulations (for example, through surface spots) cannot account
for these variations, leaving orbital modulations as the most plausible
interpretation (Fig. 1 and Supplementary Information sections B and
C). Compact binary systems with an sdB star as the primary and
having comparable orbital periods are indeed not atypical. However,
in the present case, the very subtle modulations and the suggested
presence of more than one companion raise the question of the

eventual substellar nature of these objects. In this context, the period
ratio F2/F1 < 1.43, which is close to a 3:2 resonance, is also intriguing.

We explored this possibility by evaluating the properties (in par-
ticular the radius) that these objects would need to have in order to
produce the observed variations in the light curve. There are two main
sources of modulation involving small bodies. The first is reflection by
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Université de Liège, 17 Allée du 6 Août, B-4000 Liège, Belgium. 6FNRS, rue d’Egmont 5, B-1000 Bruxelles, Belgium. 7ESO, Karl-Schwarzschild-Strasse 2, 85748 Garching bei München, Germany. 8INAF-
Osservatorio Astronomico di Torino, Strada dell’Osservatorio 20, 10025 Pino Torinese, Italy. 9Mt Suhora Observatory, Cracow Pedagogical University, ulica Podchorazych 2, 30-084 Krakow, Poland. 10Iowa
State University, Department of Physics and Astronomy, 12 Physics Hall, Ames, Iowa 50011, USA. 11Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium. 12Nordic
Optical Telescope, Apartado 474, 38700 Santa Cruz de La Palma, Spain.

Table 1 | Derived parameters of KIC 05807616 and its two planet
candidates
Stellar parameter15 KIC 05807616

Effective temperature, Teff (K) 27,730 6 270
Surface gravity, log[g (c.g.s.)] 5.52 6 0.03
Mass, M* (M[) 0.496 6 0.002
Radius, R* (R[) 0.203 6 0.007
Mean density, r* (g cm23) 84.1 6 2.9
Age after red-giant stage, A (Myr) 18.4 6 1.0
Bolometric luminosity, L (L[) 22.9 6 3.1
Apparent Johnson V-band magnitude, V 14.87 6 0.02
Distance from Earth, d (pc) 1,180 6 95

Planetary parameter Planet candidate 1
KOI 55.01

Planet candidate 2
KOI 55.02

Assumed Bond albedo*, aj 0.10 0.10
Assumed temperature contrast{, bj 0.2 0.2
Assumed inclination angle{, i (degrees) 65 65
Assumed mean density1, rj (g cm23) 5.515 5.515
Orbital period, Pj (h) 5.7625 6 0.0001 8.2293 6 0.0003
Modulation amplitude, Aj (p.p.m.) 52 6 6 ,47
Orbit radiusI, aj 8.9698 3 1010 cm

1.290R[

0.0060 AU

1.13749 3 1011 cm
1.636R[

0.0076 AU

Roche limit", dR 0.0029 AU

Mean temperature: day side#, Tj (K) 9,115 8,094
Mean temperature: night side#,
Tj(dark) (K)

1,823 1,619

Planet radiusq, Rj (R›) 0.759 0.867
Planet mass**, mj (M›) 0.440 0.655
Host star projected radial velocity{{,
vj (m s21)

0.65 0.86

Values shown assume the most probable configuration for this system. A third body (KOI 55.03) may be
present between the two well secured detections (Fig. 1). If confirmed with more observations and using
the same assumptions, its distance from the star would be 0.0065 AU, its radius 0.605R›, its mass
0.222M›, and its estimated temperature on the day (dark) side 8,735 K (1,747 K). Subscript ›

indicates Earth value.
*We use a low albedo value representative of hot Jupiters. This value is also close to Mercury’s albedo.
{b 5 Tj(dark)/Tj is a parametrization of the thermal imbalance on the planet surface. On Mercury,
b < 0.2.
{This inclination angle is suggested by the amplitude distribution of pulsation modes split by rotation.
1 Considering the derived radii, we assume rocky worlds with the Earth’s density as a representative
value.
IObtained from Kepler’s third law (equation (D15), Supplementary information section D).
"Distance from the star below which tidal disruption occurs (assuming a rigid body), dR < R*(2r*/rj)

1/3.
#Obtained assuming radiative equilibrium (equation (D5), Supplementary Information section D).
qDerived from equation (D14) in Supplementary Information section D.
**Derived from equation (D16) in Supplementary Information section D.
{{Derived from equation (D17) in Supplementary Information section D.
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the surface of each planet of the light emitted by the star; such
reflection would be modulated by the orbital motions, as we see the
planets in different phases of illumination. The second source is a
possible thermal imbalance between the heated day-side and cooler
night-side hemisphere of each planet. Assuming the rotation of each
planet is tidally synchronized to its orbital motion (a very likely situ-
ation for a compact system like KIC 05807616), we would see a thermal
emission that was modulated along their orbits16. Both effects depend
on unknown properties of the orbiting bodies. These are the amount of
light reflected and absorbed at their surface (characterized by the Bond
albedo, a) and how the absorbed heat is redistributed before being re-
emitted. For this latter effect, we adopted a simple approach involving

average temperatures on the day and night sides, assuming radiative
equilibrium and black-body re-emission. Heat redistribution is then
characterized by a parameter, b, being the ratio of the mean temper-
ature in the dark hemisphere to the mean temperature in the heated
hemisphere. The magnitude of these variations also depends on the
inclination angle of the system relative to the observer.

We calculated the planets’ properties as functions of the parameters
mentioned above and explored all plausible situations (Supplementary
Information section D). Our findings from this thorough analysis are
as follows: (1) in all configurations except for very small inclination
angles (i , 20u), the derived radii for the orbiting objects are in the
planetary range. (2) If efficient heat redistribution occurs (b . 0.90),
the objects would be in the giant planet range of sizes, similar to
Neptune or Jupiter in size. However, in most situations (when
b , 0.80), the day/night temperature contrast effect dominates, and
nearly Earth-sized planets are predicted. As this system is extremely
compact and orbits a very hot star, the temperature contrast between
the two hemispheres should be large, and therefore the value of b small,
and the small-planet solution is preferred. (3) The assumed albedo has
a limited influence on the above results and does not qualitatively
change the conclusions. A low albedo, a < 0.10, is generally observed
for hot gaseous planets17–19 and Mercury, in our Solar System, has a
comparable albedo (but, admittedly, it may not be representative of the
hottest telluric worlds). The last unknown is the inclination angle of
the system, and its effect is illustrated in Fig. 2. At very small inclina-
tions (i , 3u), the derived radius could still be in the giant-planet range.
However, the pulsations detected in KIC 05807616 provide valuable
indications that small angles (i , 20u) are improbable, suggesting
instead that i < 65u. This additional constraint relies on the reasonable
assumption that the orbits of the planets are most probably coplanar
with the star’s equatorial plane (see Supplementary Information sections
A3 and A4).

On the basis of these considerations, we have derived the parameters
for the two planet candidates, named KOI 55.01 and KOI 55.02, from the
most probable configuration for this system (Table 1). These parameters
suggest that the two planets are smaller than Earth, which would make
them the smallest planets so far found around a star still undergoing
nuclear fusion. Considering their sizes and orbital parameters, their
nature is most probably telluric. This conclusion may be further sup-
ported by a possible brightness excess (but only a 1.9s detection at this
stage) at phase zero in the phase curve of KOI-55.01 (Fig. 1). This excess,
if real, could be associated with an opposition surge, a phenomenon
observed with solid bodies having a tenuous (or no) atmosphere20. The
two planet candidates are also remarkable for the very high temperatures
expected at their surfaces, indicating that they must be undergoing
significant evaporation. However, these atypical properties, compared
with those of known planets orbiting main-sequence stars, should not be
surprising, considering the nature of the parent star. Planets in extreme
environments have been reported previously21.

Our two planets were most probably swallowed by their parent star
when it became a red giant, a stage that ended only ,18 million years
ago15. They were probably orbiting further away and may have been
dragged deep into the red-giant envelope to their current positions22.
The fact that they are of equivalent size with orbits close to a 3:2
resonance may be an important factor explaining their survival.
Indeed, preliminary N-body calculations (not shown) suggest that this
system is dynamically stable, as long as the planet masses remain lower
than several Earth masses; the system may also be stable when a third
small planet is present between KOI 55.01 and KOI 55.02. This is
consistent with our finding that small bodies should be involved.

This discovery suggests that planets may influence stellar evolution9.
The increased envelope mass ejection required to form sdB stars from
red giants is expected to occur in close interacting binaries, where the
companion can transfer some of its orbital momentum to the expanded
red-giant envelope, speeding up its rotation and thus triggering its
enhanced dissipation23. However, this does not explain how about half
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Figure 1 | Brightness variations detected in KIC 05807616. a, Amplitude
spectrum of the light modulation; b, c, phase curves for the two planet
candidates, KOI 55.01 (b) and KOI 55.02 (c). The combined Q2 1 Q5–Q8
Kepler data (Qx refers to a 3-month observation quarter; see Supplementary
information section A1) have been used (that is, 14 months of monitoring
spanning 21 months in total). In a, numerous peaks rising up to ,0.15% of the
mean brightness of the star are due to g-mode pulsations (Supplementary
Information section A1). Two weak variations indicated by vertical lines in the
low frequency domain (shown with an amplitude expansion factor of 5) are also
present, well disconnected from the g-modes. The frequency F1 at
48.204 6 0.001mHz (5.7625 6 0.0001 h) has a stable amplitude (52 6 6 p.p.m.)
and phase throughout the period of monitoring. F2 at 33.755 6 0.001mHz
(8.2293 6 0.0003 h) is the dominant component of a more complex structure
possibly caused by a frequency modulation (Supplementary Information
sections A1 and E). After evaluating alternative interpretations (Supplementary
Information sections B and C), we find that these structures are most likely to be
the signatures of two bodies of substellar nature closely orbiting the star. We
note that an even weaker signal between F1 and F2 (F3, ,29 p.p.m. at
42.4299mHz or 6.5467 h) could indicate the presence of a third body (KOI
55.03). In the following, we however concentrate on the two well secured
detections. Panels b and c illustrate the light curve phase folded (in 10 phase
bins) on the orbital period of KOI 55.01 (F1) and KOI 55.02 (F2), respectively
(error bars, s.e.m.). These curves are obtained after ‘prewhitening’ the
dominant g-mode pulsations. A small brightness excess occurring at phase zero
in b is suggested. It may be typical of an opposition surge, but it is only a 1.9s
detection and more Kepler data will be needed to clearly establish its existence.
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of the sdB stars that, like KIC 05807616, appear to be single or in well
detached binaries24, could be produced. In the present case, the planets
may have contributed to the dissipation of the envelope to the point of
making KIC 05807616 become an extreme horizontal branch star
instead of a normal horizontal branch star with a thicker residual
envelope25. A plausible scenario would be that these bodies were
originally giant planets immersed in the red-giant envelope and mas-
sive enough to survive engulfment and trigger the enhanced mass loss
necessary for the formation of a hot B subdwarf star26. During that
episode, the planets may have been stripped down, losing their gaseous
layers and being left only with their inner rocky/iron cores, which
would be exposed. The small detected bodies would then be these cores,
also named Chthonian planets27, which are dense enough to lie beyond
their Roche limit (see Table 1), thus avoiding disruption by the strong
tides generated by the parent star.

Alternative scenarios may also be considered. Another way to form
single sdB stars is through the merger of two helium white dwarfs23,
and planet formation following this event may be possible28. We could

speculate that the collapse of the extended envelope resulting from this
merger could produce a circumstellar disk, where second generation
planets may form. However, it seems unlikely that new, sufficiently
dense, planets could have formed within a rather short period of time
(less than ,18 Myr) in an environment that close to this hot star.
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