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Abstract

The photospheres of the coolest helium-atmosphere white dwarfs are characterized by fluidlike densities. Under
those conditions, standard approximations used in model atmosphere codes are no longer appropriate.
Unfortunately, the majority of cool He-rich white dwarfs show no spectral features, giving us no opportunities
to put more elaborate models to the test. In the few cases where spectral features are observed (such as in cool DQ
or DZ stars), current models completely fail to reproduce the spectroscopic data, signaling shortcomings in our
theoretical framework. In order to fully trust parameters derived solely from the energy distribution, it is thus
important to at least succeed in reproducing the spectra of the few coolest stars exhibiting spectral features,
especially since such stars possess even less extreme physical conditions due to the presence of heavy elements. In
this paper, we revise every building block of our model atmosphere code in order to eliminate low-density
approximations. Our updated white dwarf atmosphere code incorporates state-of-the-art constitutive physics
suitable for the conditions found in cool helium-rich stars (DC and DZ white dwarfs). This includes new high-
density metal-line profiles, nonideal continuum opacities, an accurate equation of state, and a detailed description
of the ionization equilibrium. In particular, we present new ab initio calculations to assess the ionization
equilibrium of heavy elements (C, Ca, Fe, Mg, and Na) in a dense helium medium and show how our improved
models allow us to achieve better spectral fits for two cool DZ stars, Ross 640 and LP 658-2.

Key words: equation of state – opacity – stars: atmospheres – stars: individual (LP 658-2) – stars: individual (Ross
640) – white dwarfs

1. Introduction

Pure helium-rich white dwarfs do not show any spectral lines
when Teff  10,000K. The same occurs for Teff  5000 K in the
case of pure hydrogen-rich atmospheres. Together, these
featureless white dwarfs are known as DC stars. One is thus
forced to rely solely on the shape of the spectral energy
distribution to deduce the chemical composition and effective
temperature of these white dwarfs (Bergeron et al. 1997, 2001).
Although most cool white dwarfs have featureless spectra, some
cool helium-rich white dwarfs do show significant spectral
features that can be exploited to retrieve additional information
on the physical conditions encountered in their atmospheres.
Some contain enough hydrogen to show strong H2–He collision-
induced absorption (CIA) features, some show C2 Swan bands
(DQ and DQpec stars), and others show metal lines (DZ stars).
Interestingly, in all cases, models fail to reproduce these spectra.
For instance, the CIA is inadequately modeled (e.g., LHS 3250,
SDSS J123812.85+350249.1, SDSS J125106.11+440303.0;
Gianninas et al. 2015), the C2 bands are distorted (e.g., LHS
290; Kowalski 2010a), and the metal absorption lines often do
not have the right strength or shape (e.g., WD 2356–209,
Bergeron et al. 2005; Homeier et al. 2005, 2007; LP 658-2, Wolff
et al. 2002; Dufour et al. 2007).

For all of these stars, the discrepancies between models and
observations can be related to nonideal high-density effects
arising at the photosphere, since for cool (Teff<6000 K)
helium-rich white dwarfs, densities reach fluidlike values. At a
Rosseland optical depth τR=2/3, density can be as high as
1 g cm 3- (Bergeron et al. 1995; Kowalski 2010b), which
corresponds to a fluid where the separation between atoms is

roughly equivalent to the dimension of the atoms themselves.
Clearly, under such conditions, interactions between species
are no longer negligible, and the ideal gas approximation must
be discarded.
The nonideal effects arising from this high density have

remained mostly unnoticed for DC stars, since a featureless
spectrum provides little opportunity to test the accuracy of
atmosphere models. In contrast, cool helium-rich stars with
spectral features (i.e., DQpec, DZ, and those with CIA features)
provide a real challenge to atmosphere models and an
opportunity to test our understanding of the chemistry and
physics of warm dense helium.
In this series of papers, we present and apply our new

generation of atmosphere models for cool white dwarf stars. In
the first paper of the series, we focus on improving our
modeling of cool DZ stars. Note that obtaining better fits of
these objects is far more than a mere aesthetic whim. Indeed,
because they show spectral lines, cool DZ stars represent a
unique opportunity to probe the physics and chemistry of cool
helium-rich atmospheres. In a way, they allow us to test the
models used for DC stars. Once we have proven that our new
models are able to reproduce the rich and complex spectra of
cool DZ stars, we will be confident that the constitutive physics
is accurate and that the models can reliably be used to measure
the atmospheric parameters of all DC stars in general.
This paper describes our new model atmosphere code that

includes all nonideal effects relevant for the modeling of
the atmospheres of cool DZ and DC stars. This updated
atmosphere code is based on the one described in Dufour et al.
(2007). Building on other published works, as well as on our
own new calculations, we have considerably improved the
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constitutive physics in our code. Section 2 describes the
additions made to correctly calculate radiative opacities, and in
Section 3, we discuss the improvements related to the equation
of state and the chemical equilibrium. Among the new physics
added to the chemical equilibrium calculations, we used
ab initio techniques to implement a state-of-the-art description
of the chemical equilibrium of heavy elements (C, Ca, Fe, Mg,
and Na) in the dense atmosphere of cool DZ stars. These
calculations are detailed at length in Section 4. In Section 5, we
present two applications that show how the improvements
included in our models translate in terms of spectroscopic fits.
Finally, in Section 6, we summarize our results and outline the
upcoming papers of this series.

2. Radiative Opacities

In this section, we describe the additions brought to the code
of Dufour et al. (2007) regarding the calculation of radiative
opacities. This includes improved line profiles, high-density
CIA distortion, and continuum opacities corrected for collec-
tive interactions.

2.1. Line Profiles

In the atmosphere of cool DZ stars, the wings of heavy-
element absorption lines are severely broadened by interactions
with neutral helium. Hence, Lorentzian profiles poorly
reproduce observed spectral features. It is thus an absolute
necessity to implement the unified line shape theory described
in Allard et al. (1999) to treat such line profiles. We
implemented this formalism for the strongest transitions found
in cool DZ white dwarfs (see Table 1). In particular, the
line profiles described in Allard & Alekseev (2014), Allard
et al. (2014, 2016a, 2016b), and N. F. Allard et al. (2018, in
preparation) are used to compute the wings, and a conventional
Lorentzian profile is assumed for the core of the spectral lines,
where the density is low enough for this approximation to hold.
To connect the two profiles, we use a hyperbolic tangent
function, which allows a smooth transition. It should also be
noted that our Ca I 4226Å profile is still preliminary, as we do
not yet have access to the high-quality ab initio potentials
required for the computation of this particular line profile. To
make up for this lack, we computed our own ab initio potentials
through open-shell configuration-interaction singles calcula-
tions with the ROCIS module of the ORCA quantum chemistry
package4 (Neese 2012).

For transitions not listed in Table 1, our code assumes a
simple Lorentzian function or quasistatic van der Waals
broadening (Walkup et al. 1984; D. Koester 2018, private

communication). Note that the exact treatment of these
secondary transitions has a limited impact on our atmospheric
determinations.
We show in Figure 1 a comparison of line profiles calculated

using the theory of Allard et al. (1999) to those found assuming
a Lorentzian profile for temperature and density conditions
representative of the photosphere of cool DZ stars. Clearly,
under such conditions, the Lorentzian function fails to provide
a satisfactory description of the line profiles. It underestimates
the strong broadening observed in the more accurate line
profiles and does not take into account the distortion and shift
observed for many transitions.

2.2. Collision-induced Absorption

The calculation of the H2–He CIA includes the high-density
distortion effects described in Blouin et al. (2017). This pressure
distortion effect alters the infrared energy distribution of cool DZ
stars with hydrogen in their atmospheres and a photospheric
density greater than 0.1 g cm 3» - (n 1.5 10 cmHe

22 3= ´ - ).
Moreover, we have also included the He–He–He CIA using the
analytical fits given in Kowalski (2014).

2.3. Rayleigh Scattering

In a dense helium medium, collective interactions between
atoms lead to a reduction of the Rayleigh-scattering cross
section (Iglesias et al. 2002). For the wavelength domain
relevant for white dwarf modeling (i.e., in the low-frequency
limit), the reduced cross section can be expressed as (Kowalski
2006a; Rohrmann 2018)

S 0 , 1Rayleigh Rayleigh
0s w s w=( ) ( ) ( ) ( )

where Rayleigh
0s w( ) is the ideal gas result (e.g., Dalgarno 1962)

and S(0) is the structure factor of the fluid at a wavenumber
k=0. Therefore, to take into account the reduction of the
Rayleigh scattering, we simply need to know S(0), which is a
function of the temperature and density of the helium fluid. To
compute S(0), we use the analytical fit to the Monte Carlo
results of Rohrmann (2018).

2.4. He− Free–Free Absorption

Iglesias et al. (2002) also showed that the free–free
absorption cross section of the negative helium ion is reduced
in a dense helium medium. Given that it is the dominant source
of opacity in DZ stars, it is important to take this reduction into
account. The corrected cross section for He− free–free
absorption is given by Iglesias et al. (2002),

, 2ff ff ff
0s w d w s w=( ) ( ) ( ) ( )

where ff
0s w( ) is the ideal gas result (e.g., John 1994). Here δff

(ω) can be computed as (Iglesias et al. 2002)
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0 0
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Table 1
Metal-line Profiles Computed Using the Unified Line Shape Theory Described

in Allard et al. (1999)

Lines Source

Ca I 4226 Å N. F. Allard (2018, private communication)
Ca II H & K Allard & Alekseev (2014)
Mg I 2852 Å N. F. Allard et al. (2018, in preparation)
Mg II 2795/2802 Å Allard et al. (2016a)
Mgb triplet Allard et al. (2016b)
Na I D doublet Allard et al. (2014)

4 https://orcaforum.cec.mpg.de
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In the last expressions, ò(ω) is the dielectric function, me and e
are the electron mass and charge, kB is the Boltzmann constant,
 is the reduced Planck constant, and re He f[ ( )]– is the Fourier
transform of the electron–helium potential, for which we use
the simple form given by Equations (3.5) and (3.6) of Iglesias
et al. (2002). From these equations, it follows that two external
inputs are needed to compute δff(ω): (1) the structure factor S(k)
and (2) the index of refraction of helium n w w=( ) ( ) . The
details regarding the calculation of the structure factor are given
below, while our evaluation of the index of refraction is
described in Section 2.5.

To compute S(k), we rely on the classical fluid theory and the
Ornstein–Zernike (OZ) equation. To solve the OZ equation, we
use the Percus–Yevick closure relation (Percus & Yevick 1958),
since it is well-suited for fluids dominated by short-range
interactions (i.e., non-coulombic interactions; Hansen &
McDonald 2006). The calculations are performed using a

modified version of pyOZ.5 Figure 2 compares our S(0) values
to the S(0) analytical fit given in Rohrmann (2018). The
agreement between both data sets is satisfactory under

1 g cm 3r = - (n 1.5 10 cmHe
23 3= ´ - ) but worsens at higher

densities. This disagreement reflects the limitations of the
Percus–Yevick closure relation at high densities in a regime
where the Monte Carlo calculations of Rohrmann (2018) are
more appropriate. Nevertheless, this small discrepancy is of
limited importance in the context of the modeling of cool DZ
stars, since the photospheric density of our models never
exceeds 1 g cm 3» - .

2.5. Index of Refraction

The index of refraction, which is needed to compute the
correction to the He− free–free cross section (Equations (3) and
(4)), is obtained from the Lorentz–Lorenz equation,

n

n
A

n a

N
B

n a

N
n

1

2
, 6R R

2

2
He 0

3

A

He 0
3

A

2

He
3

-
+

= + +
⎛
⎝⎜

⎞
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⎛
⎝⎜

⎞
⎠⎟ ( ) ( )

where AR and BR are the first and the second refractivity virial
coefficients, nHe is the helium number density, a0 is the Bohr
radius, and NA is the Avogadro constant. Here AR is

Figure 1. Absorption cross section of metal spectral lines. The black lines correspond to the Lorentzian profiles, and the red ones are the profiles obtained with the
unified line shape theory of Allard et al. (1999). These line profiles were computed assuming T=6000 K and nHe=1022 cm−3. Note that the improved line profile
for Ca I 4226 Å relies on approximate potentials (see text).

5 http://pyoz.vrbka.net
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proportional to the atomic polarizability α(ω) and is given by

A
N4

3
. 7R

Aw
p a w

=( ) ( ) ( )

To compute AR, we use the helium polarizability values
reported in Masili & Starace (2003). For the second refractivity
virial coefficient, we rely on the classical statistical mechanics
expression (e.g., Fernández et al. 1999)
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where Δαave(ω, r) is the interaction-induced isotropic polariz-
ability and f(r) is the helium–helium interatomic potential. To
compute Δαave(ω, r), we turn to the expansion

r r S r, 0, 4, , 9ave ave
2 4a w a w wD = D + D - +( ) ( ) ( ) ( ) ( )

where Δαave(0, r) is given in Hättig et al. (1999) and Maroulis
(2000), and the Cauchy moment ΔS(−4, r) is given in Hättig
et al. (1999). Finally, for the interaction potential f(r) in
Equation (8), we use the effective pair potential of Ross &
Young (1986), which is calibrated to fit experimental data for
high-density helium.

To validate our analytical model of the index of refraction,
we compared its predicted values with the high-pressure
experimental measurements of Dewaele et al. (2003). This
comparison is shown in Figure 3 and reveals no significant
deviation between our values and the laboratory measurements.
Additionally, we checked that our index-of-refraction values
are virtually identical to those obtained by Rohrmann (2018).

3. Equation of State and Chemical Equilibrium

In this section, we describe how the equation-of-state and
chemical equilibrium calculations were modified to take high-
density nonideal effects into account.

3.1. Equation of State

The total number density and internal energy density in each
atmospheric layer are computed using the ab initio equations of

state for hydrogen and helium published by Becker et al.
(2014). As in Blouin et al. (2017), we resort to the additive
volume rule for mixed H/He compositions. The mass density
ρ(P, T) and internal energy density u(P, T) are given by

P T

X

P T

Y

P T

1

, , ,
, 10

mix H Her r r
= +

( ) ( ) ( )
( )

u P T Xu P T Yu P T, , , , 11mix H He= +( ) ( ) ( ) ( )

where X and Y are the mass fractions of hydrogen and helium,
respectively.
For the densest cool DZ stars, the pressure at the photosphere

exceeds 1011 dyn cm−2. Under such conditions, using the ideal
gas law can lead to an important overestimation of the density.
In fact, as shown in Figure 4, the ideal gas density can be up to
a factor of 5 greater than the value found when using the
equation of state of Becker et al. (2014). Such a difference
can have a significant effect on the computed atmosphere
structure and the synthetic spectrum, since most nonideal

Figure 3. Index of refraction of helium as a function of density. The line
corresponds to the results of our calculations with Equations (6)–(8), and the
circles are the laboratory measurements extracted from Dewaele et al. (2003).
For both data sets, T=300 K and λ=6328 Å.

Figure 4. Density of a helium medium as a function of pressure and
temperature. The solid lines show the results found when using the equation of
state of Becker et al. (2014), and the dashed lines correspond to the case where
the ideal gas law is assumed.

Figure 2. Structure factor at k=0 as a function of density and for different
temperatures. The solid lines show the analytical fits obtained by Rohrmann
(2018) from Monte Carlo calculations, and the circles show the results we
found by solving the OZ equation.

4

The Astrophysical Journal, 863:184 (17pp), 2018 August 20 Blouin, Dufour, & Allard



effects included in the code (e.g., detailed line profiles,
distorted CIA profiles, high-density continuum opacities, and
nonideal chemical equilibrium) are parameterized as functions
of the density. For instance, using the ideal gas law would lead
to an overestimation of the broadening of spectral lines due to
an overestimation of the density of perturbing helium atoms.

3.2. Chemical Equilibrium

To compute the ionization equilibrium of helium, we rely on
the chemical model proposed by Kowalski et al. (2007). Since
it does not rely on any free parameter, this ionization
equilibrium model is a major improvement over the occupation
probability formalism (Hummer & Mihalas 1988; Mihalas
et al. 1988) used in most white dwarf atmosphere codes.
Compared to models where the ideal Saha equation is assumed,
DZ models that include the helium ionization equilibrium of
Kowalski et al. (2007) reach slightly lower densities in their
deepest layers. This is the result of pressure ionization, which
increases the electronic density and, in turn, the opacity.
However, this effect is not as important as in metal-free
atmospheres, since heavy elements provide the majority of free
electrons and therefore govern the atmosphere structure.

We have also included a detailed description of the
ionization equilibrium of heavy elements, which is the subject
of Section 4.

4. Ionization Equilibrium of Heavy Elements

Properly characterizing the ionization equilibrium of heavy
elements in the atmosphere of cool DZ stars is important from
several perspectives. First, accurate ionization ratios are
necessary to obtain the right spectral-line depths. For instance,
in the case of a star that shows both Ca II H & K and Ca I
4226Å in its spectrum, obtaining the right Ca II/Ca I ratio is a
prerequisite for simultaneously reproducing all spectral lines.
Moreover, in cool DZ stars, heavy elements provide most of
the electrons. Therefore, a change in the ionization equilibrium
of these trace species can influence other opacity sources (most
importantly, He− free–free) and hence the whole structure of
the atmosphere.

Unlike the rest of the nonideal effects added to our
atmosphere code, the equilibrium of heavy elements in the
dense atmosphere of cool DZ stars has not yet been explored by
other investigators using state-of-the-art methods. Therefore,
we had to perform our own calculations before implementing
this improved constitutive physics in our code. In this section,
we first give some theoretical background and describe our
strategy to compute the ionization equilibrium (Section 4.1).
Then, results from our ab initio calculations are presented in
Section 4.2 and applied to white dwarf atmospheres in
Section 4.3.

4.1. Theoretical Framework

4.1.1. The Chemical Picture

To tackle the problem of the ionization equilibrium of heavy
elements in the dense atmosphere of cool white dwarfs, we rely
on the chemical picture. In this approach, atoms, ions, and
electrons are considered as the basic particles, and their
interactions are modeled through interaction potentials. This is
not as exact as the physical picture, where nuclei and electrons
are the basic particles. However, using the chemical picture has

several advantages. Since this approach is semi-analytical, the
results derived from it are more easily applicable in stellar
atmosphere codes (especially regarding opacity calculations,
where thousands of bound states must be taken into account to
include the multitude of observed spectral lines). Moreover, it
is easier to identify the contribution of every physical effect and
thus gain a better physical insight of the problem at hand
(Winisdoerffer & Chabrier 2005).
In the chemical picture, the ionization equilibrium problem is

reduced to the minimization of the Helmholtz free energy
F N V T, ,i({ } ) associated with a mixture made of species Ni{ }
in a volume V maintained at temperature T (see, for instance,
Fontaine et al. 1977; Magni & Mazzitelli 1979; Hummer &
Mihalas 1988; Saumon & Chabrier 1992). The total Helmholtz
free energy of a mixture of atoms, ions, and electrons can be
expressed as the sum of the ideal free energy of the electron gas
Fe

id, the ideal free energy of every ion from every species Fj k,
id ,

the contribution from the internal structure of bound species
Fj k,

int, and the nonideal contribution related to the interaction
between species Fnid,

F F F F F , 12
j k

j k
j k

j ke
id

,
id

,
int nidåå åå= + + + ( )

where k is an ionization state and j is an atomic species.
Since F must be minimized, dF=0, and the ionization

equilibrium of species J between ionization states K and K+1
imposes

F
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which, by definition of the chemical potential, is equivalent to
the condition

. 14J K J K e, , 1m m m= ++ ( )

Neglecting the interaction term Fnid in Equation (12) and
taking Fe

id and Fj k,
id to be the free energy of an ideal

nonrelativistic, nondegenerate gas (Landau & Lifchitz 1980),
Equation (14) leads to the well-known Saha equation,

n n

n

Q

Q

m k T

h
e

2 2
, 15K e

K

K

K

e I k T1 1 B
2

3 2
B

p
=+ + -⎜ ⎟⎛

⎝
⎞
⎠ ( )

where h is the Planck constant, ni are number densities, Qi are
partition functions, and I is the ionization potential.
Now, if we keep the nonideal terms in the free-energy

equation, we find a result of the form of Equation (15) but with
an effective ionization potential I+ΔI (Kowalski et al. 2007;
Zaghloul 2009),

n n

n

Q

Q

m k T

h
e

2 2
, 16K e

K

K
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e I I k T1 1 B
2

3 2
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where

I . 17K Ke
nid

1
nid nidm m mD = + -+ ( )

5

The Astrophysical Journal, 863:184 (17pp), 2018 August 20 Blouin, Dufour, & Allard



Therefore, to compute the nonideal ionization equilibrium of
heavy elements in dense helium-rich fluids, all that is needed is
to compute the appropriate ΔI given by the above equation.

In Equation (17), it is the difference in free energy of many-
body systems in thermodynamic equilibrium with different
ionization states that is computed. This yields an effective
ionization potential applicable to thermodynamic ionization
equilibrium calculations. As emphasized by Crowley (2014),
this ionization potential is not directly applicable to none-
quilibrium processes (e.g., photoionization). These are fast
(adiabatic) processes that occur before the surrounding plasma
has any time to respond.

4.1.2. General Strategy

To compute ΔI, we have to evaluate the nonideal chemical
potential of every species involved in the ionization process.
The electronic term e

nidm is already available in the literature.
Kowalski et al. (2007) performed density functional theory
(DFT) calculations to evaluate the excess energy of an electron
embedded in a dense helium medium and found values that are
in good agreement with existing laboratory measurements
(Broomall et al. 1976). These calculations, published as
polynomial expansions, were performed for a range of
temperatures and densities suitable for our purpose.

While K 1
nidm + and K

nidm were calculated by Kowalski et al.
(2007) in the case of helium ionization, we are not aware of any
study where the nonideal chemical potentials were computed
for heavy elements surrounded by dense helium. The central
task of this section is to compute these chemical potentials in
order to obtain ΔI by virtue of Equation (17).

In the limit of strongly coupled systems, the role of entropy
can be neglected for the calculation of thermodynamic
equilibrium ionization potential, since the configuration of
atoms remains the same before and after the ionization takes
place. However, plasmas encountered in white dwarf atmo-
spheres have a finite coupling strength. When an atom is
ionized, the medium responds, and additional energy is
transferred between the atom and the surrounding particles
(Crowley 2014). Therefore, the nonideal chemical potential of
a species in ionization state K can be expressed as the sum of
two contributions,

E , 18K K K
nid exc nid,entm m= + ( )

where EK
exc is the excess of internal energy per particle and K

nid,entm
is the entropic contribution to the nonideal chemical potential. Note
that this separation of K

nidm into two distinct components directly
follows from the definition of the Helmholtz free energy. As
F=E+TS and F NK K K N V T

nid nid
, ,k K

m = ¶ ¶ ¹( )∣ , we can write

E TS

N
E . 19K

K K

K N V T

K K
nid

nid nid

, ,

exc nid,ent

k K

m m=
¶ +

¶
= +

¹

( ) ( )

Our general strategy is summarized in Figure 5. To compute
the K

nid,entm contribution, we follow the work of Kowalski
(2006b) and Kowalski et al. (2007) and use the classical fluid
theory and OZ equation, as detailed in Section 4.2.1. To
retrieve EK

exc, we turn to DFT to compute the excess energy of a
metallic ion embedded in a dense helium medium. This
approach has the advantage of naturally taking into account
many-body interaction terms. Prior to using DFT to compute
EK

exc, we use molecular dynamics (MD) simulations to obtain

representative atomic configurations, as described in detail in
Section 4.2.2.

4.1.3. Comparison with Previous Studies

To take into account the nonideal ionization of heavy
elements, white dwarf atmosphere models (Koester &
Wolff 2000; Wolff et al. 2002; Dufour et al. 2007) typically
rely on the Hummer–Mihalas occupation probability formalism
(Hummer & Mihalas 1988; Mihalas et al. 1988). In this
framework, an occupation probability wi is assigned to every
electronic level of every ion. If the level is unperturbed,
wi=1; if the level is completely destroyed by interparticle
interactions, wi=0. This occupation probability appears in the
Boltzmann distribution and multiplies every term of the
partition function,

Q w g
e

k T
exp , 20K

i
iK iK

iK

B
å= -

⎛
⎝⎜

⎞
⎠⎟ ( )

where the sum is over all states i of species K, and g is a
statistical weight. To compute wi in the particular case of
neutral interactions, Hummer & Mihalas (1988) used the
second virial coefficient in the van der Waals equation of state
to obtain

w n r rexp
4

3
, 21i

i
i i i

3åp
= - +

¢
¢ ¢

⎡
⎣⎢

⎤
⎦⎥( ) ( )

where ni is the number density of the particles in state i and ri is
the radius of the particles in this state. The interpretation of
Equation (21) is straightforward: when a state occupies a
volume of the same order as the mean volume allowed per

Figure 5. Computational strategy used to retrieve the nonideal chemical
potential of ionic species. The dashed arrow indicates a validation step
described in Section 4.2.2.
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particle, it is gradually destroyed. Although simple and easy to
implement in atmosphere models, we see three important
drawbacks with this approach.

1. This formalism is expected to break down above
0.01 g cm 3» - (Hummer & Mihalas 1988), which is

insufficient for many cool DZ white dwarfs.
2. The excluded volume effect is only a caricature of the real

interaction potential between two neutral particles.
3. There is no theoretical prescription for the radii ri. For

instance, for a ground-state He I atom, should r be given by
the hydrogenic approximation (r n a Z 0.392

0 eff= = Å)
or the van der Waals radius (1.40Å; Bondi 1964)? To
address this problem, it is always possible to calibrate the
radii to fit the spectral lines observed in white dwarf stars.
This was successfully done by Bergeron et al. (1991) for
hydrogen, but it would be impracticable for DZ stars, where
many ions contribute to the total electronic density.

Our approach aims at answering these three concerns. First,
by taking into account many-body interaction terms, it is
designed to remain physically exact up to densities of the order
of 1 g cm 3- . Second, the interaction between species is
modeled through ab initio calculations that accurately describe
the complex behavior of electrons under these high-density
conditions. Finally, since we rely only on first-principles
physics, our method does not require any free parameters.

4.1.4. Approximations

Before moving to the calculation of the nonideal chemical
potentials and ΔI in Section 4.2, we take time to justify three
important approximations that we use throughout Section 4.

Electrons and heavy elements as trace species. We are
interested in helium-rich plasmas, where heavy elements and
electrons can be considered as trace species. Hence, we
completely neglect the interaction of metallic ions with other
metallic ions and with electrons. This approximation is justified
by the very low abundance of heavy elements in white dwarf
atmospheres. Indeed, to our knowledge, the most metal-rich
DZ star mentioned in the literature has an atmosphere with a
number density ratio of log Ca He 6» - (Ton 345; Wilson
et al. 2015).

As a consequence of this approximation, we completely
ignore the excess energy resulting from the interaction between
charged species. Since electrostatic interactions occur at long
range, this approximation deserves some additional justifica-
tion. To show that electrostatic interactions are negligible, we
computed the contribution of electrostatic interactions to the
Helmholtz free energy. The latter can be broken down into
three components (Chabrier & Potekhin 1998),

F F F F , 22ee ii ieelec = + + ( )

where Fee is the exchange-correlation contribution from the
electron fluid, F ii is the contribution from the one-
component ion plasma, and F ie is the electron screening
contribution. To evaluate Felec, we used the equations
reported in Ichimaru et al. (1987) for F ee and those in
Chabrier & Potekhin (1998) for F ii and F ie. If all electrons
originate from singly ionized species, then Felec is a function
of only the electronic density ne and the plasma temperature

T. Figure 6 shows I F
N N

elec elec
e j i, 1

D = +¶
¶

¶
¶ +( ) for different

ne and T. The dashed line indicates the electronic density at
the photosphere (τR=2/3) of vMa2, a typical cool DZ star.
At these electronic densities and temperatures, the effect of
electrostatic interactions on ΔI is only a few meV and is
therefore negligible compared to the total ΔI reported later
in this paper (which is of the order of a few eV). The
charged-particle density is simply too low for electrostatic
interactions to have any significant effect.
Omission of the quantum behavior of ions. We do not take

into account the quantum behavior of ions and atoms. To
justify this approximation, we can compute the first quantum
correction of the Helmholtz free energy (Wigner 1932), which
can be seen as a correction for the overlapping wave functions
of nearby particles. For an m-component mixture, it can be
expressed as (Saumon & Chabrier 1991)

F
kTV

N N
r g r r dr

12
, 23

a b

m
a b

ab
ab ab

quant
2

,

2 2
òåp

m
f=  ( ) ( ) ( )

where fab(r) and gab(r) are, respectively, the pair potential and
pair distribution function between species a and b, and

ab
m m

m m
a b

a b
m =

+
is the reduced mass of particles a and b.

The contribution of this term to ΔI is computed as

I F
N N

quant quant
j k j k, 1 ,

D = -¶
¶

¶
¶+( ) . Using the pair distribution

functions and pair potentials described in Section 4.2.1, we find
that ΔIquant remains below 5 meV for all physical conditions
relevant for the modeling of the atmosphere of cool DZ stars.
As this is well below Eexc and nid,entm , we can safely ignore the
quantum behavior of ions.
The ground-state approximation. To compute the ionization

equilibrium of heavy elements, we assume that every atom is in
its electronic ground state. This solely means that we consider
all species to be in their ground state when computing the
ionization equilibrium. Once the ionization equilibrium is
computed, the population of every electronic state can be
obtained through the Boltzmann distribution. How good is this
approximation? For helium atoms, this approximation is
excellent. The first excited state of He I lies at 19.8 eV, so
almost all helium atoms are in their fundamental state for the
temperature domain in which we are interested (kBT<1 eV).

Figure 6. Contribution of the electrostatic interaction to the effective ionization
potential with respect to the electronic density and temperature. The dashed line
indicates the electronic density at τR=2/3 for vMa2, a typical cool DZ star.
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For heavy elements, this approximation could be proble-
matic. It is well known that excited states are typically more
affected by nonideal effects than the fundamental state (e.g.,
Hummer & Mihalas 1988). Therefore, since the ΔI term in
Equation (16) only takes into account the destruction of the
fundamental state, an error could be introduced in the
ionization equilibrium if excited states are affected in a
significantly different way and if they account for a large
portion of the partition function Q.

To investigate the maximum error associated with this
approximation, we computed the fundamental-state contrib-
ution to the partition function Q for C, Ca, Fe, Mg, and Na. The
results are shown in Figure 7 for kBT=0.5 eV. The worst
possible error associated with this approximation will occur if
all excited states are destroyed while the fundamental state
remains unperturbed (see Equation (20)). This scenario is
highly unlikely but provides an easy way of assessing the
maximum error. If it is the case, then, as shown in Figure 7,
the maximum error on Q is ≈40% (see Fe II). Therefore, in the
worst case, the ionization fraction will be wrong by a factor
of ≈2.

This maximum error is not a cause of concern for the
modeling of the atmosphere of cool DZ stars. First, for all other
atomic species (C, Ca, Mg, and Na), Q is far more dominated
by the fundamental-state contribution, and the maximal error
associated with this approximation is thus much smaller than
the value derived for Fe. Second, for the coolest DZ stars, the
relative contribution of the fundamental state to the partition
function is higher than for their warmer counterparts. There-
fore, the ground-state approximation becomes more accurate
for the stars for which the departure for the ideal chemical
equilibrium is expected to be the most important. Last but not
least, for the conditions relevant for the modeling of cool DZ
stars, both this work and the formalism of Hummer & Mihalas
(1988) predict deviations for the ideal gas equilibrium that are
much more important than the aforementioned factor of ≈2
(see, for instance, Figure 15).

4.2. Results

In this section, we detail the computations performed to
obtain ΔI for C, Ca, Fe, Mg, and Na. In Sections 4.2.1 and
4.2.2, we describe the computational setup and our inter-
mediate results, and our final results are given in Section 4.2.3.
For the sake of clarity, we only refer to Ca in the discussion of
Sections 4.2.1 and 4.2.2, although all of the reported
calculations were also performed for C, Fe, Mg, and Na.

4.2.1. Entropic Contribution

To compute the entropic contribution to the nonideal
chemical potential, we first use the OZ equation (and the
Percus–Yevick closure relation) to find the radial distribution
function g rHe Ca ( )– describing the spatial configuration of Ca
relative to He atoms. Then, once the radial distribution function
g rHe Ca ( )– is obtained, Ca

nidm can be obtained through Equations
(9) and (12) of Kiselyov & Martynov (1990). From there, we
simply subtract the excess energy of Ca (as computed in the OZ
framework) to obtain Ca

nid,entm (Equation (18)).
To compute g rHe Ca ( )– with the OZ equation, the pair

potentials rHe Hef ( )– and rHe Caf ( )– must be specified (in
accordance with the approximation detailed in Section 4.1.4,

r 0Ca Caf =( )– , since the metal–metal interactions are
neglected). For the helium–helium pair potential, we use the
effective pair potential of Ross & Young (1986).
As metal–helium pair potentials are not available in the

literature for every metallic ion considered in this work, we had
to compute ab initio pair potentials between helium and
metallic ions. To do so, we used the ORCA quantum chemistry
package to obtain the potential energy Ca Hef – at various
separations,

r E r E E , 24Ca He Ca He He Caf = - -( ) ( ) ( )– –

where E rCa He ( )– is the total energy for a separation r and EHe

and ECa are the computed energies of isolated He and Ca
atoms. We rely on the CCSD(T) method (Raghavachari
et al. 1989) as implemented in ORCA (Neese et al. 2009;
Kollmar & Neese 2010) with the aug-cc-pCVQZ basis sets
(Dunning 1989; Kendall et al. 1992; Woon & Dunning 1993).
Using the counterpoise method (Boys & Bernardi 1970), we
verified that the basis set superposition error is small enough
(<2 meV) to be neglected for our purpose.
In the particular case of Ca, a few interaction potentials can

be found in the literature for the Ca I–He I (Partridge et al.
2001; Lovallo & Klobukowski 2004) and Ca II–He I interac-
tions (Czuchaj et al. 1996; Allard & Alekseev 2014). We used
the values reported by these authors to validate our computa-
tional setup. This comparison, which reveals no significant
differences, is shown in Figure 8.
The main limitation of these pair potentials is that they were

obtained in the infinite-dilution limit (i.e., Ca interacts with
only one He atom). Therefore, when we use these potentials,
we implicitly assume that the total potential is pairwise
additive, and an error may be introduced if many-body terms
are important. This is the main reason why we resort to the OZ
equation only to compute the entropic contribution and not to
compute the excess energies. In fact, as described in
Section 4.2.2, we turn to DFT to compute excess energies,
which guarantees that many-body interaction terms are
properly taken into account.

Figure 7. Comparison of the contributions of the fundamental state and the
excited states to the partition function Q at k T 0.5B = eV for heavy ions found
in cool DZ stars. The number at the end of each bar gives the fraction of Q
resulting from excited states. This figure was made using the atomic data of the
NIST Atomic Spectra Database (Kramida et al. 2015).
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4.2.2. Excess Energy Contribution

The excess energy of Ca embedded in a dense helium
medium made of N He atoms is given by

E E E E , 25N NCa He
exc

He Ca He Ca= - -+ ( )–

where ENCa He+ is the total energy of the system, ENHe is the
energy of the N He atoms, and ECa is the computed energy of
the isolated Ca atom. This calculation requires two steps. First,
we need to find meaningful atomic configurations for the
system (i.e., configurations that are representative of the
thermodynamic fluctuations undergone by the real system).
Then, we can use these configurations to compute the excess
energy with Equation (25).

MD. To obtain representative atomic configurations of a
system consisting of one Ca atom surrounded by N He atoms at
a given temperature and density, we turned to classical MD
simulations. More precisely, we used LAMMPS6 (Plimp-
ton 1995) and the pair potentials described in Section 4.2.1.
The simulations were performed in a cubic box with periodic
boundary conditions. The box size and the number of He atoms
included in the simulations were chosen to attain the desired
density (additional considerations regarding finite-size effects
are discussed in the next paragraph), and the temperature was
kept near the target value using a Nosé–Hoover thermostat
(Nosé 1984; Hoover 1985). The simulations were run for 5 ns
using 0.2 fs time steps. At regular time intervals, the atomic
positions were saved, and it is these configurations that we use
in the next section to compute the excess energies.

DFT calculations. To compute the excess energy of Ca in
the atomic configurations extracted from the MD simulations,
we used the QUANTUM ESPRESSO7 DFT package (Giannozzi
et al. 2009) with the PBE exchange-correlation functional
(Perdew et al. 1996) and norm-conserving pseudopotentials.
For all DFT calculations, we chose a kinetic energy cutoff of
45 Ry (612 eV) and a charge density cutoff of 180 Ry. We
checked that this cutoff is enough to achieve a <0.05 eV

convergence of the metal excess energy. To remove the
electrostatic interaction associated with periodic boundary
conditions, we used the Martyna–Tuckerman correction
(Martyna & Tuckerman 1999) as implemented in QUANTUM
ESPRESSO, which allows us to correct both the total energy and
the self-consistent field potential.
Furthermore, to make sure that the finite size of the box does

not result in undesired artifacts, we performed simulations
using different numbers of helium atoms per simulation box
and different box sizes (up to N=160 helium atoms and
a=30 au). We found that using at least N=50 helium atoms
and a simulation box of at least a=15 au (7.94Å) allows a
<0.1 eV convergence of the excess energy compared to results
obtained at the same density with higher N and a values. This
indicates that finite-size artifacts are negligible when these two
conditions are met. Hence, all DFT calculations reported in this
work were performed with a 15 au and N�50.
When computing the excess energy Eexc using configuration

snapshots extracted from MD simulations, the results can
fluctuate drastically from one configuration to the other. This is
shown in Figure 9, where the lines represent the evolution of
Eexc from configuration to configuration. In Figure 10, we show

Figure 8. Comparison between the pair potentials for the Ca I–He I and Ca II–
He I interactions computed in this work and the values reported in Lovallo &
Klobukowski (2004), Partridge et al. (2001), Czuchaj et al. (1996), and Allard
& Alekseev (2014).

Figure 9. Excess energy of Ca at T=4000 K for configurations taken at 25 ps
intervals from MD trajectories for different helium densities.

Figure 10. Autocorrelation function of the excess energy time series shown in
Figure 9.

6 http://lammps.sandia.gov
7 http://quantum-espresso.org
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the autocorrelation function of the Eexc time series,
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Since the autocorrelation function quickly decays to zero, we
conclude that the time elapsed between each configuration
snapshot is long enough for the Eexc time-series values to be
statistically independent. Therefore, we can safely apply the
central-limit theorem to compute the standard error of the
mean,

N
. 27E

E
exc

excs
s

=á ñ ( )

Figure 11 shows the evolution of Eexcsá ñ with respect to the
number of configurations used to compute the mean. For both
ρ=0.1 and 1.0 g cm 3r = - , we notice the N1 decay of

Eexcsá ñ. This implies that to improve the error by a factor of 2, the
number of configurations needs to be quadrupled. From this
analysis, we chose to use 100 configurations for each (T, ρ)
condition. This value is enough to obtain 0.1Eexc sá ñ eV for
most physical conditions considered in this work, which is an
error that we consider acceptable for our purpose.

Validation with ab initio MD. Since our rCa Hef ( )– potential
was calculated in the infinite-dilution limit, one could be
worried about the exactitude of the atomic configurations
obtained through MD using this potential. To check this point,
we computed the excess energy of Ca using configurations
extracted from ab initio MD simulations. In this framework, no
pair potential is assumed. The electronic density, energy, and
forces on ions are recomputed at every time step of the
simulation using DFT. This approach is expected to be more
exact than the classical MD approach, but its computational
cost is larger by orders of magnitude. These calculations were
performed using Born–Oppenheimer MD with the CPMD
package8 (Marx & Hutter 2000; Hutter et al. 2008), with the
PBE exchange-correlation functional and ultrasoft pseudopo-
tentials (Vanderbilt 1990). We employed 0.5 fs time steps and

an energy cutoff of 35 Ry. As before, we extracted atomic
configurations from these simulations and used these config-
urations to compute the interaction energy of Ca with the
surrounding medium through DFT calculations.
Figure 12 compares the results obtained to those found with

the classical MD simulations. This comparison shows that there
is only a negligible difference between the two approaches, at
least below 1 g cm 3r = - . We did not perform any comparison
at higher densities because of the prohibitive calculation time
of such calculations. In any case, densities above 1 g cm 3- are
never encountered at the photosphere of cool DZ white dwarfs
(Section 4.3). Therefore, we conclude that our infinite-dilution
limit potential rCa Hef ( )– is sufficient to generate the atomic
configurations used to compute the excess energy (and it is
much faster than resorting to ab initio MD simulations).

4.2.3. Ionization Equilibrium

Following the methodology described in the previous
sections, we computed K

nid,entm and EK
exc for C I/C II, Ca I/Ca II,

Fe I/Fe II, Mg I/Mg II, and Na I/Na II. By adding these excess
chemical potentials to the electron excess energy, we computed
how much the ionization potential is altered at a given density
and temperature (Equation (17)). Figure 13, which shows the
three contributions to ΔI (free electron excess energy, variation
of EK

exc, and change in K
nid,entm ), illustrates this process in the

case of Ca.
Figure 14 shows our final results. First, for every ion

considered, we notice that I 0D  when 0r  . This is the
expected behavior, and it shows that our methodology is
consistent with the ideal regime when we push it to low
densities. Second, we note that ΔI is always negative and that
its absolute value increases with density. This result means that
ionization becomes easier with increasing density, which also
corresponds to the expected behavior. Finally, for all elements
except Fe, we notice that higher temperatures are associated
with slightly larger ionization potential depressions. This result
is consistent with the findings of Kowalski et al. (2007), who
found a reduction of the band gap of warm dense helium with
increasing temperature.

Figure 11. Standard error of the mean of the Ca excess energy at T=4000 K
with respect to the number of independent configurations used to compute the
mean for different helium densities. Figure 12. Excess energy of Ca at T=5000 K for different helium densities,

obtained from configurations extracted from ab initio MD (DFT-MD) and
classical MD using the pair potentials described in Section 4.2.1.

8 http://cpmd.org
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To easily implement these nonideal ionization potentials in
atmosphere models, we have fitted our results with a simple
function of ρ and T,

I T a bT c, min 0, , 282r r rD = + +( ) { ( ) } ( )

where a, b, and c are parameters found using a χ2 minimization
algorithm, ρ is the helium density in g cm 3- , and T is the
temperature in K. This expression allows a satisfactory fit to the
data and yields ΔI=0 at ρ=0. The analytical fits are shown
in Figure 14, and the fitting parameters are reported in Table 2.
Formally, in order to stay within the limits of our calculations,
the use of these analytical expressions should be limited to
densities between 0 and 1.5 g cm 3- and temperatures between
4000 and 8000 K. Nevertheless, we have verified that
Equation (28) can safely be extrapolated to lower (down to
2000 K) or higher (at least up to 10,000 K) temperatures if
needed.

4.2.4. Comparison with Previous Studies

It is instructive to compare these results with the ionization
equilibrium predicted by the Hummer–Mihalas occupation
probability formalism, which is widely used in atmosphere
codes. Since there is no theoretical prescription for the values
of the hard sphere radii used to compute the occupation
probabilities (Equation (21)), a somewhat arbitrary choice must
be made to perform this comparison. We chose to compute the
hard sphere radii with the hydrogenic approximation, as
described by Beauchamp (1995). In this approximation, the
radius of a species in state i is given by

r
n a

Z
, 29i

i

i

2
0

eff
= ( )

where ni is the principal quantum number of the uppermost
electron, a0 is the Bohr radius, and the effective nuclei charge
Zi

eff is given by

Z n
I

13.598 eV
, 30i i

ieff = ( )

where Ii is the energy needed to ionize an electron from state i.
In the Hummer–Mihalas formalism, every term in the partition

function is multiplied by the occupation probability (Equation (20)).
If we stick to the ground-state approximation (Section 4.1.4), the
occupation probability is the same for every level and can be
factored out of the partition-function sum. Hence, the net effect of
the Hummer–Mihalas formalism is to multiply the right-hand side
of the Saha equation (Equation (15)) by the ratio of occupation
probabilities, w wZII ZI.
Figure 15 compares the multiplicative factors that need to be

applied to the right-hand side of the Saha equation for the Ca I/
Ca II ionization equilibrium to account for nonideal effects (i.e.,
w wCa CaII I in the case of the Hummer–Mihalas formalism and
e I k TB-D ( ) for our ionization model). The most obvious aspect
of Figure 15 is that we find a weaker pressure ionization than
what is predicted using the Hummer–Mihalas formalism and
hard sphere radii computed in the hydrogenic approximation.
We checked that this result holds true for C, Fe, Mg, and Na.
This conclusion is consistent with the findings of Bergeron
et al. (1991) for the ionization equilibrium of hydrogen in cool
DA stars. Using the Hummer–Mihalas formalism and a
hydrogen radius given by rn=n2a0, they found that the high
Balmer lines are predicted to be too weak, indicating that
pressure ionization in the Hummer–Mihalas formalism is too
strong. They showed that using a smaller radius in the
computation of the occupation probabilities, rn=0.5n2a0,
allows better spectral fits.
Unfortunately, we cannot compute the ionization potential

depression of H to directly confirm the conclusion of Bergeron
et al. (1991). The problem is that the H II–He potential (e.g.,
Kołos & Peek 1976; Pachucki 2012) has a deep attractive well
(since H+ and He can form the HeH+ molecule) that prevents
proper convergence of the OZ equation solver. The same issue
arises if we try to compute the ionization potential of H in an
H-rich medium, since the H II–H I potential (e.g., Frost &
Musulin 1954) also has an important attractive well (H+ and H
can form the H2

+ molecule).

4.3. Atmosphere Models

Using the analytical model described in the previous section,
we implemented the improved ionization equilibrium of heavy
elements in our atmosphere code to investigate how it affects
the synthetic spectra of cool DZ stars. Before even examining
any spectrum, we can get an idea of the impact of the new
nonideal ionization equilibrium by looking at the densities
involved in the model atmospheres. Figure 16 shows the
density at τν=2/3 as a function of λ for a few atmosphere
models with different effective temperatures and calcium
abundances.9 This type of figure is useful to identify which
densities are probed at different wavelengths. In the previous
section, we saw that no important deviation from the ideal
ionization equilibrium is expected below 0.1 g cm 3- (see
Figure 14). From Figure 16, it is clear that the probed densities
are below this threshold for Ca He 10 10 - and above this
threshold for Ca He 10 10 - . Therefore, it should become
important to take into account the nonideal ionization
equilibrium for cool DZ atmosphere models with
Ca He 10 10 - , but it is probably superfluous for models
with Ca He 10 10 - (note that nonideal effects on the
opacities and the equation of state nevertheless remain

Figure 13. Contributions added to the reference ionization potential of Ca to
obtain its effective ionization potential at various densities (see legend). These
results are for T 4000 K= .

9 In this paper, the abundance of all metallic species, from C to Cu, is scaled
to the abundance of Ca to match the abundance ratios of chondrites reported in
Lodders (2003).
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important in this regime). For intermediate densities
(Ca He 10 10» - ), using the nonideal ionization equilibrium
should result in small changes in the spectral-line wings of the
coolest models.

Figure 17 compares synthetic spectra computed with our
ionization equilibrium model to spectra computed using the
occupation probability formalism and the ideal Saha equili-
brium (in each case, the atmosphere model structure and the
synthetic spectrum were computed using the same ionization
model). This figure focuses on the region between 3500 and
4500Å, since it contains several Ca, Fe, and Mg absorption
lines likely to be affected by the choice of the ionization model.

The first thing to note is that for the high-density models (i.e.,
those with a low metal abundance and effective temperature),
there are important differences between spectra obtained using
the ideal Saha equilibrium and our ionization model. These

Figure 14. Depression of the ionization potential of C, Ca, Fe, Mg, and Na embedded in a dense helium fluid. Circles show the results of our ab initio calculations, and
error bars indicate the statistical errors associated with the configuration sampling. The solid lines show the analytical fits found through a χ2 minimization of
Equation (28). Data in red are for T=8000 K, and data in yellow are for T=4000 K.

Table 2
Fitting Parameters for ΔI(ρ, T) (Equation (28))

Ion aa bb cc

C 1.91782 −3.24813 −1.19948
Ca −2.20703 −0.14431 0.57494
Fe −2.23142 0.48427 0.21301
Mg 0.45809 −0.85522 −1.01958
Na −0.52305 −0.62471 0.04833

Notes.
a eV g cm1 3- .
b 10 eV g K cm4 1 1 3- - - .
c eV g cm2 6- .

Figure 15. Multiplicative factor applied to the right-hand side of the Ca I/Ca II
Saha equation (Equation (15)) to take nonideal effects into account. The blue
line is w wCa CaII I, the result obtained using the Hummer–Mihalas formalism,
and the green curve is e I k TB-D ( ), the result obtained with our ionization model.
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differences are mostly due to a shift in the continuum
associated with the increased electronic density in models that
take pressure ionization into account. Next, we notice that the
spectra computed using the Hummer–Mihalas formalism are
even further from the spectra obtained using the ideal Saha
equilibrium than those computed with our ionization model.
This is not surprising, since, as seen in Figure 15, the Hummer–
Mihalas formalism predicts a very strong pressure ionization.
Finally, for the low-density models (i.e., those with a high
metal abundance and/or effective temperature), all three sets of
spectra are virtually identical, which is consistent with our
analysis of Figure 16.

The nonideal chemical equilibrium of heavy elements also
has a small impact on the model atmosphere structure. The
increased electronic density associated with pressure ionization
leads to an increase of the Rosseland mean opacity and
therefore a reduction of the pressure at the photosphere. For
instance, for Teff=4000 K, glog 8= , and Ca He 10 11= - , a
model that assumes the ideal Saha equation has a photospheric
density of 0.93 g cm 3- , while an atmosphere structure based on
our ionization model has a photospheric density of
0.89 g cm 3- . Moreover, the occupation probability formalism
predicts a density that is still lower (0.84 g cm 3- ). Given
Figure 15, this result is not surprising: compared to our
calculations, the Hummer–Mihalas formalism overestimates
the efficiency of pressure ionization.

Our results constitute a physically grounded answer to the
question of the importance of pressure ionization in cool DZ
stars, which will help to reduce the gap between solutions
found with different atmosphere codes. A good example to
illustrate this point is vMa2 (WD 0046+051). On one hand,
using an ideal treatment of chemical equilibrium, Dufour et al.

(2007) found a solution with Teff=(6220±240) K. On the
other hand, using the Hummer–Mihalas occupation probability
formalism, Wolff et al. (2002) found Teff=(5700±200) K.
In their analysis, Dufour et al. (2007) showed that the
difference between both solutions can largely be explained
by the different chemical equilibrium models used in both
studies. This uncertainty can be removed by relying on the
accurate description of the chemical equilibrium described in
the current work.

5. Applications

To show how the improved constitutive physics presented in
this work translates in terms of better spectroscopic fits, this
section presents the analysis of two well-known DZ stars: Ross
640 (WD 1626+368) and LP 658-2 (WD 0552–041).
Applications to other objects will be presented in other papers
of the series.
Our new analysis of these two objects makes use of Gaia

DR2 parallaxes (Prusti et al. 2016; Brown et al. 2018), BVRI
and JHK photometry published in Bergeron et al. (2001; see
Table 3), optical spectra published in Giammichele et al.
(2012), and UV spectra obtained with HST and the Faint Object
Spectrograph (FOS; Koester & Wolff 2000; Wolff et al. 2002).

5.1. Ross 640

At Teff≈8000 K, Ross 640 is technically not a “cool” white
dwarf. Since the density at its photosphere is 0.01 g cm 3» -

(n 1.5 10 cmHe
21 3= ´ - ), nonideal effects affecting the

equation of state and chemical equilibrium are minimal.
However, this density is high enough to induce important
differences between Lorentzian profiles and the improved line
profiles presented in Section 2.1. This object is therefore the
perfect candidate to test our line profiles separately, without the
interference of other nonideal effects.
To fit this star, we follow the procedure described in Dufour

et al. (2007). In short, we first find Teff and glog using the
photometric technique described in Bergeron et al. (2001). The
photometric measurements are first converted into fluxes using
the constants reported in Holberg & Bergeron (2006). Then,
these observed fluxes fν are compared to the model fluxes Hν to
obtain Teff and the solid angle π(R/D)

2, where R is the radius of
the star and D is its distance to the Earth. These parameters are
found using a χ2 minimization technique relying on the
Levenberg–Marquardt algorithm. Since D is known from
the parallax measurement, the radius R can be computed from
the solid angle. The mass of the star and the corresponding
surface gravity g=GM/R2 are then found using the evolu-
tionary models of Fontaine et al. (2001). This glog value being
generally different from our initial guess, we repeat the fitting
procedure until all fitting parameters are converged.
Once a consistent solution for Teff and glog is obtained from

the procedure described in the previous paragraph, we move to
the determination of the abundances using spectroscopic
observations. We keep Teff and glog fixed to the values found
using the photometric observations and then fit the Ca/He and
H/He ratios by minimizing the χ2 between our synthetic
spectra and the observed spectrum. Since the abundances found
with this technique are generally different from those initially
used for the photometric fit, the whole fitting procedure is
repeated until internal consistency is reached.

Figure 16. Density at an optical depth τν=2/3 with respect to λ. The top
panel shows the results for Teff=4000 K models and the bottom panel for
Teff=6000 K. The Ca abundance is given in the legend, and a surface gravity

glog 8= is assumed.
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Although the abundance ratio between the different heavy
elements is kept constant during the χ2 minimization
procedure, we manually adjust the abundance ratio of Mg,
Fe, and Si to fit the spectral lines labeled in Figure 18. All other
heavy elements (from C to Cu) are included in the models, but
since we could not use any spectral line to fit their abundances,
we simply assume the same abundance ratio with respect to Ca
as in chondrites (Lodders 2003).

As shown in Figure 18, our solution is consistent with
observations across all wavelengths. Our fitting parameters, given
in Table 4, are roughly similar to those found by Dufour et al.
(2007), Koester & Wolff (2000), and Zeidler-KT et al. (1986),
although they all found a higher effective temperature (8440
320 , 8500±200, and 8800K, respectively). One major
improvement compared to previous authors is our fit to the
broad Mg II 2795/2802Å lines. To obtain a good fit, Koester &
Wolff (2000) arbitrarily multiplied the van der Waals broadening
constant of these lines by 10. No arbitrary constants are needed
using our new line profiles, and a consistent abundance is found
from both the optical and ultraviolet magnesium lines.

5.2. LP 658-2

LP 658-2 is a DZ star that exhibits a weak Ca II H & K
doublet. During the last two decades, many authors have tried

to fit this star, but none has reached a consistent solution across
all wavelengths. Because they relied on different models and
observations, the solutions they found are quite diverse (see
Table 5).
First, Bergeron et al. (2001) found that LP 658-2 has a

helium-rich atmosphere with Teff=(5060±60)K. However,
their analysis was based on atmosphere models that did not
include heavy elements, which strongly influence UV opacities
and the temperature profile.
Then, using HST data (FOS), Wolff et al. (2002) extended

the analysis of Bergeron et al. (2001) with an investigation of
the UV portion of the spectrum of LP 658-2. The large
absorption feature observed in the UV was interpreted as strong
broadening from the wing of Lyα. Keeping the effective
temperature fixed at the Teff=5060 K value found by
Bergeron et al. (2001), they used this UV absorption feature
to fit the hydrogen abundance and found that
H He 5 10 4= ´ - . However, contrary to other stars in their
sample (e.g., LHS 1126 and BPM 4729), they were not able to
properly reproduce the shape of this UV absorption feature.
Subsequently, using models that include heavy elements in

the atmosphere structure, Dufour et al. (2007) determined a
much cooler temperature for LP 658-2 (Teff=4270±70 K).
At this temperature, the photometric data can completely
exclude the presence of traces of hydrogen at the level found by
Wolff et al. (2002), since H2–He CIA would cause a strong IR
flux depletion that is not observed. However, the solution of
Dufour et al. (2007) does not explain the UV absorption feature
seen in the FOS data, and their spectroscopic solution predicted
a large Ca I 4226Å line, which is completely absent from the
observations.
More recently, Giammichele et al. (2012) argued that the

narrow H & K lines observed in the spectra of LP 658-2
indicate that it is perhaps a hydrogen-rich star after all.
However, although an H-rich composition allowed a better fit
to the visible spectrum than that of Dufour et al. (2007), the
photometric fit was not as good (and it cannot explain the shape
of the UV spectrum).

Figure 17. Comparison between synthetic spectra computed using the Hummer & Mihalas (1988) formalism (blue), the ionization equilibrium presented in this work
(red), and the ideal Saha equation (black). All models were computed assuming glog 8= and H He 0= . The effective temperature and metal abundance are
indicated above each panel.

Table 3
Observational Data

Ross 640 LP 658-2

Parallax (mas) 62.915±0.022 155.250±0.029
Ba 14.02 15.49
V 13.83 14.45
R 13.75 13.99
I 13.66 13.54
J 13.58 13.05
H 13.57 12.86
K 13.58 12.78

Note.
a There is a 3% uncertainty on all photometric measurements.
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Using our improved models, we can now obtain a solution
that agrees perfectly with the observations across all wave-
lengths assuming a helium-rich atmosphere (Figure 19). We
can also constrain the amount of hydrogen to H He 10 5< - , as
a higher hydrogen abundance would produce an IR flux
depletion that is incompatible with the observations. Given this
limit, the shape of the UV continuum can no longer be
explained by the wing of Lyα (see the green dash-dotted line in
Figure 19). Instead, we find that the absorption in the UV can
naturally be explained by the presence of trace amounts of
magnesium (absorption from the Mg II 2795/2802Å and Mg I
2852Å lines). While there are no lines formally detected, the
amount of magnesium needed to reproduce the UV continuum
is small enough as to not produce features in the optical
spectrum.
Finally, our new models do not predict the strong Ca I

4226Å line that was predicted using the models of Dufour
et al. (2007). This is mainly due to the use of our improved line
profiles (Section 2.1), as well as our new nonideal Ca
ionization equilibrium calculation (Section 4), the former effect
being the most important. Our fitting parameters, given in
Table 4, were found using the same fitting procedure as for
Ross 640.

6. Conclusion

We have developed an updated atmosphere model code that
incorporates all the necessary constitutive physics for an
accurate description of cool DZ stars. This code includes

• the most important heavy-element line profiles computed
using the unified line shape theory of Allard et al. (1999),

Figure 18. Our best solution for Ross 640. The top panel shows our fit to the
UV spectrum, the middle panel is our fit to the visible spectrum, and the bottom
panel shows our photometric fit to the BVRI and JHK bands.

Table 4
Fitting Parameters

Ross 640 LP 658-2

Teff (K) 8070±140 4430±40
glog 7.923±0.008 7.967±0.022

log H He −3.5±0.2 <−5
log Ca He −9.12±0.05 −11.38±0.05
log Fe He −8.44±0.10 L
log Mg He −7.40±0.10 −8.66±0.20
log Si He −7.90±0.20 L

Table 5
Literature Review of LP 658-2

Authors Teff (K) H/He

Bergeron et al. (2001) 5060±60 He
Wolff et al. (2002) 5060±60 H He 5 10 4= ´ -

Dufour et al. (2007) 4270±70 He
Giammichele et al. (2012) 5180±80 H

Figure 19. Our best solution for LP 658-2. The top panel shows our fit to the
visible spectrum, and the bottom panel displays our fit to the photometric
observations and FOS data. The bottom panel also shows two synthetic UV
spectra computed without the Mg II 2795/2802 Å and Mg I 2852 Å lines, one
without hydrogen (blue) and one with H He 10 5= - (green).
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• CIA profiles suitable for fluids where the density
exceeds 0.1 g cm 3- ,

• He Rayleigh scattering and He− free–free absorption
corrected for collective interactions between atoms,

• an ab initio equation of state for H and He, and
• a nonideal chemical equilibrium model for He, C, Ca, Fe,
Mg, and Na.

While most of these nonideal effects were implemented using
results previously published by various authors, we performed
our own calculations to assess the chemical equilibrium of
heavy elements.

More precisely, we used the classical theory of fluid and
DFT calculations to characterize the ionization equilibrium of
C, Ca, Fe, Mg, and Na in a dense helium medium and under the
temperature and density conditions found in the atmosphere of
cool DZ stars. These calculations show that the effective
ionization potential begins to decrease when the density
exceeds 0.1 g cm 3- , reaching a depression of 1 2 eV» – at

1 g cm 3r = - . We provided analytical fits to our data that can
be implemented in atmosphere model codes to obtain the
effective ionization potential for a given temperature and
density.

We computed atmosphere models using this improved
description of the ionization of heavy elements and found that
under the right conditions (i.e., weakly polluted, low-Teff
objects), the synthetic spectrum can significantly differ from
results obtained using the ideal Saha equation. Moreover, we
found that the Hummer–Mihalas formalism—when used in
conjunction with hydrogenic hard sphere radii—leads to a
much stronger pressure ionization than our model, which
indicates an overestimation of pressure ionization. This result is
consistent with previous findings based on comparisons
between atmosphere models and observed spectra (Bergeron
et al. 1991). Finally, we showed how the improved constitutive
physics included in our code translates into better spectral fits
for Ross 640 and LP 658-2, two cool DZ stars that presented a
challenge to previous atmosphere model codes.

In the next papers of this series, we will use our updated
models to analyze in detail other cool white dwarfs, in
particular WD 2356–209 (a peculiar cool DZ star showing an
exceptionally strong Na D feature) and the first cool DZ star to
show CIA absorption. We will also analyze the bulk of the
known cool white dwarfs taking advantage of the Gaia data
and revisit the spectral evolution of these objects.

We wish to thank Piotr M. Kowalski for useful discussions
regarding the DFT calculations presented in Section 4. This
work was supported in part by NSERC (Canada).

This work has made use of data from the European Space
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Consortium (DPAC;http://www.cosmos.esa.int/web/gaia/
dpac/consortium). Funding for the DPAC has been provided
by national institutions, in particular the institutions participat-
ing in the Gaia Multilateral Agreement.
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Hubble Space Telescope and obtained from the Hubble Legacy
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Canadian Astronomy Data Centre (CADC/NRC/CSA).
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