NIRPS Backend Cryostat/Optomechanics

Leslie Saddlemyer

National Research Council - Canada Herzberg Institute of Astrophysics 2016-01-14

- SPIROU cryostat
- Design Concepts
- Assumptions
- Lessons learned

- Inspired by HARPS
- Extended to:
 - NIR
 - 80K
- Literature search
 - Thermal measurement and control
 - Studied systems with microK level measurement and control
 - Find issues (eg Lakeshore metrology systems have documented dependence on electronics air temperature)

Selection of thermal control

- Methodology
- Hardware

Assumptions

Ensure that we simplify what has to be monitored/controlled

No 'adjustments'

- Hard bolted or bonded at all material interfaces
- Minimises chances of any physical changes
- NO mechanisms/changers/options

Simple

4

- Minimal components and joints
- Mechanical decoupling
 - Flexures
 - U-joints
- Thermally cohesive
 - All optical element mounts designed to remain at same relative heights
 - Aluminum is the default structure wrt bench/mounts
 - Invar etc utilized to compensate when necessary (eg parabola mount)
- Optics are flexure bonded/supported to minimise joint stiction

→ Thermal changes dominate instabilities

"With sufficient resolution in the control system, a well designed structure can be controlled to arbitrarily close to the measurement resolution"

Analysis of the optics/design and mechanical structure

\rightarrow 1 to 2 mK stability level (24 hours)

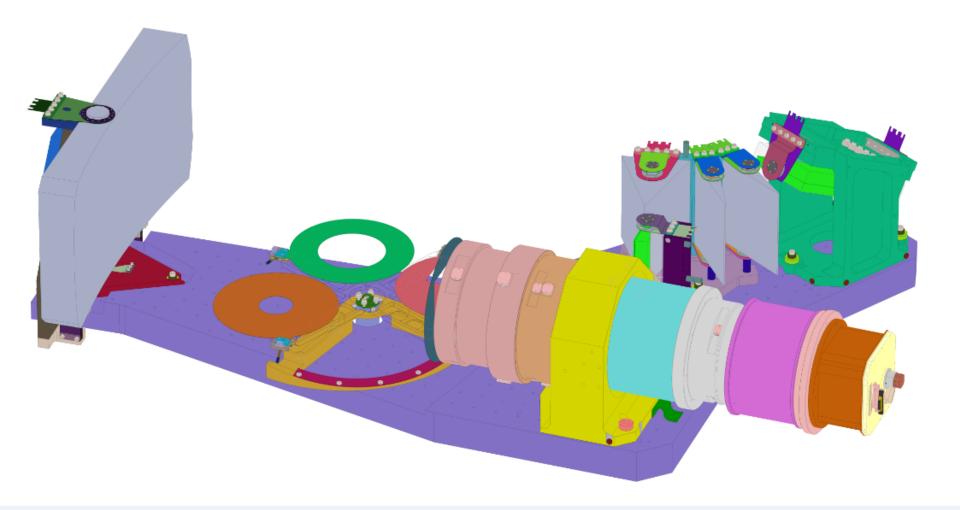
•Resolution of critical components << 1 mK (~0.02 mK)

- CERNOX® 4-wire sensors
- Micro-K ® electronics for most critical components

 Precision of measurements << 1 mK (~0.1 mK) on time-scales of months



Layered approach


- Bench/shields
 - Supported on independent thermal isolation
 - Multiple radiation shielding
 - Optical bench/mounts: controlled to < 1 mK
 - Passive radiation shield
 - Active radiation shield: controlled to < 10 mK
 - Passive radiation shield
- Housing (cryostat)
 - Internal radiation shielding
 - External potential insulation (with optional heaters: ~0.1 C)
- Lots of measurement points
 - 12 at < 1mK (Micro-K)
 - 24 at 1mK (Lakeshore)

DESIGNED BY 11/15/2011 DRAWN BY 5/18/2011 RESHETOV VLAD RESHETOV MILLIMETERS CHANGED 11/15/2011 SIZE SCALE SHEET UNLESS SPECIFIED RESHETOV B 1:1 1 UNLESS SPECIFIED RESHETOV CATEGORY PART NUMBER VER SPIROU - SP-000-00778 03 DOC TYPE OF DD 5

T T

- Small, small, small
 - I love the AO system
 - Keep the cryostat smaller
 - Less thermal mass to worry about
 - Easier to work on/transport etc
- Simple
 - Mounts
 - Control
 - operation
- Choose wisely
 - Quality components where it counts, such as the thermometry
 - Avoid temptation to try and be too complex (unless it turns out to be absolutely necessary)
 - Build early and test
 - Add incrementally as/if necessary